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Preface

The International Conference on Cognitive Modelling (ICCM) is the premier conference
for research on computational models and computation-based theories of human
cognition. ICCM is a forum for presenting and discussing the complete spectrum of
cognitive modelling approaches, including but not limited to connectionism, symbolic
modelling, dynamical systems, Bayesian modelling, and cognitive architectures.
Research topics can range from low-level perception to high-level reasoning. In 2022,
ICCM was jointly held with MathPsych, the annual meeting of the Society for
Mathematical Psychology. Both events were held in a hybrid manner; first there was a
purely online event running from July 11 to July 15, 2022, and then there was an in-
person event held in Toronto, Canada from July 23 to July 27.
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Models in an Interactive Task
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Abstract

This work tries to answer fundamental questions of learning
bias in cognitive models, how decision-making strategies in
different cognitive models vary and why. Using a biased coin
in a coin flip game, we study the number of trials it takes for
each cognitive model to learn the asymmetry in the coin. Also,
we investigate how the model behaves knowing the
asymmetry. A web-based game is designed to simulate coin
flipping to collect the models' data. The most common
approaches to model the decision-making process are used for
this study. Cognitive architectures such as ACT-R and PyIBL
with the capability of learning and making decisions are used
and compared. Also, we consider Reinforcement Learning
with different decision-making strategies such as Thompson
Sampling, Boltzmann Exploration, and Epsilon Greedy
algorithm. All developed models interact with the task
environment and complete the task. To facilitate the interaction
between the models and the game’s interface, we developed a
new tool called VisiTor. VisiTor grants cognitive models the
ability to gain information and execute actions in dynamic
environments. The results show models are capable of
replicating human’s main decision-making strategies:
matching and maximizing.

Keywords: ACT-R; cognitive modeling; reinforcement
learning; instance-based learning; binary choice experiments;
decision-making

Introduction

The most commonly used method to study human decision-
making procedures consists of observing human performance
in a choice task and proceeding with developing a cognitive
model. These models emulate human behavior (Cassimatis,
Bello, & Langley, 2008); Erev et al. (2005) discussed the
learning process with immediate feedback, which consists of
different processes such as the tradeoffs of adaptation and
maximization in repeated choice tasks. They proposed a
Reinforcement Learning model alongside the cognitive
strategies to consider the payoff variability and other
deviations. Janssen et al. (2012) also utilized ACT-R to study
the effect of the reward value. They suggested a new
approach to determine the reward that is experienced in the
environment. Lebiere et al. (2007) used Instance-Based
Learning (IBL) to demonstrate that a binary choice problem
with immediate feedback does not always lead to payoff
maximization. One of the factors that limits the studies to
explore more complicated choice tasks is the restricted
cognitive models' capability to interact with task
environments. ACT-R is a hybrid cognitive architecture that

is consisted of a set of programmable information-processing
mechanisms. These mechanisms are used to predict and
explain human behavior, including cognition and interaction
with the environment (J. R. Anderson et al., 2004; Ritter,
Tehranchi, & Oury, 2018; Tehranchi & Ritter, 2018a). Ever
since the emergence of ACR-R in 1998 (John R Anderson,
Bothell, Lebiere, & Matessa, 1998), several researchers have
utilized ACT-R capabilities to simulate human interaction
and cognition while performing a specific task (Cao, Ho, &
He, 2018; Gray, Schoelles, & Sims, 2005; Hope, Schoelles,
& Gray, 2014). ACT-R models typically interact with the
world through ACT-R's device interface, an abstract
representation of the world based on a simulated Lisp
environment provided with ACT-R or by instrumenting
interfaces. However, these interactions are limited to being
applied to an unmodified ACT-R environment in special
windows provided by ACT-R. In other words, if the
environment that a model is interacting with is subject to
change, the model will not be able to work properly. PyIBL
is a Python implementation of a subset of Instance-Based
Learning Theory (Gonzalez, Lerch, & Lebiere, 2003). PyIBL
does not have a built-in capability to interact with any
environment.

Inspired by JSegMan, SegMan, and ACT-CV (Halbriigge,
2013; St. Amant, Riedel, Ritter, & Reifers, 2005; Tehranchi
& Ritter, 2018b), we developed VisiTor (Vision+Motor) that
generates the required interactions in dynamic task
environments. VisiTor simulates users' visual attention
(vision) and use of a mouse and keyboard (Motor). This tool
allows ACT-R and PyIBL to interact with any environment
while keeping the operations similar to users as close as
possible and its capabilities are expandable.

Probability Learning and Decision-Making in
Psychology Literature

Unknown bias effects on decision-making and prediction of
the next outcome using a binary choice prediction task have
been studied before. Bilda, Gero, and Sun (2006) conducted
a simulation modeling bias for a pitch in baseball. Altmann
and Burns (2005) studied the effect of streaks in coin flips on
the prediction of the next toss. In binary choice experiments,
participants are asked on each trial to predict the outcome of
an event such as a coin flip. The outcome is usually biased
towards one of the choices, and participants are not informed
of the bias. Altmann et al. (2005) claimed that participants
tend to adapt their behavior to the relative reward accordingly
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instead of maximizing the expected reward. In another word,
they try to "match” rather than "maximize.” In matching,
participants’ choices would reflect bias in the coin, while in
maximizing, the participants would maximize the reward by
choosing the option with a higher probability of success.
Assume in a coin flip game that the ratio of head and tail is 3
to 1. While matching, Participants predict heads on roughly
75% of trials by the end of a session. Whereas in the optimal
strategy, one should choose head 100 percent of the trials to
maximize the number of wins, once they detect the bias. This
aligns with (Vulkan, 2000) results. Such behavior is
paradoxical because matching results in less reward receipt
than maximizing. This is because participants cannot know
when a given location or response option will be rewarded,
even if they are aware of the overall reward rate.

The effects of age in the strategy taken after learning the
bias has been a subject of conflict among Probability
Learning studies. The ratio of school-age children
demonstrating matching strategy is similar to the ratio of
adults using the matching strategy (Brackbill & Bravos,
1962; Derks & Paclisanu, 1967). Also, Younger children
(ages 3-5 years) demonstrate maximizing more than older
children (Plate, Fulvio, Shutts, Green, & Pollak, 2018). While
Moran 1l and McCullers (1979) have found that adults
maximize rewards more effectively than children. Recently,
Plate et al. (2018) conducted a comprehensive study on adults
and children. They compared their results to 4 different
decision-making models: Random model, Matching model,
Maximizing model and a combination of the last two
(Combination model). Most adults and children's results
matched the Combination model based on their study,
suggesting participants exhibited matching behavior at the
outset of the experiment and then crossed over to maximizing
in the experiment. All participants who did not crossover
from matching to maximizing were the best fit by the
probability Matching model and are sensitive to the
underlying probabilities. In summary, all researchers agree
that people can identify the bias if the bias is significant
enough. However, how they react to the bias is still a subject
of discussion.

Probability Learning and Decision-Making in
Artificial Intelligence Literature

Probability Learning and decision-making models are not
following the same strategy when taking an action. Most of
Reinforcement Learning models learn the outcome
distribution of each action by using posterior distribution
over the outcome of each action. These models seek to find
the best possible action for each scenario (Zhu, 2018). On the
other hand, cognitive models do not necessarily look for the
best action. Instead, they try to simulate human behaviors in
the same scenario, regardless of the optimality of choice
(Lebiere et al., 2007). In line with psychology literature,
cognitive models have different strategies for decision-
making. Reinforcement Learning models and cognitive
models are capable of imitating both matching and
maximizing decision-making strategies.

Agents, developed using Reinforcement Learning (RL),
interact with a task environment and generally learn to
maximize their rewards (Sutton & Barto, 2018). These agents
discover which actions to take to generate the highest
possible rewards.

The Reinforcement Learning model discovers the right set
of actions to take by trial and error. By observing the result
after each instance, the model learns the outcome distribution
of the actions. There are two important components in
learning the outcome distribution of each choice: (a) how to
update the outcome distribution based on the action taken,
and (b) what action to take. The reward function is the
cornerstone of the learning aspect of RL models. It maps each
action to the outcome. The environment's characteristics,
such as the delay between taking an action and observing the
outcome and the possible outcome distributions, can affect
how the reward function is defined (Guo, 2017). Deep
Reinforcement Learning models replace the reward function
with a Neural Network and let the model determine the best
reward function (Li, 2017).

Decision-making strategies such as the Greedy algorithm
results in maximizing, Boltzmann Exploration results in
matching, and Thompson Sampling (Thompson, 1933)
results in the combination of matching and maximizing
behavior.

Due to this limitation of greedy algorithms, several
methods have been developed to add exploration through
randomly perturbing actions that a greedy algorithm would
select (Dabney, Ostrovski, & Barreto, 2020; Masadeh, Wang,
& Kamal, 2018; Tokic, 2010). These methods are called
Dithering. The most basic Dithering method is called Epsilon
Greedy Exploration. This method applies the greedy action
with probability 1 — ¢ and otherwise selects an action
uniformly at random. Although this type of exploration
improves the performance of the greedy algorithm, it wastes
resources by trying all the actions, even those that are
unlikely to generate a better reward than what we already
have. For example, half of the exploration is wasted by trying
action 2. This issue gets worse as the number of actions
increases.

Thompson Sampling was introduced more than 80 years
ago (Thompson, 1933). This method provides an alternative
to dithering that more intelligently allocates the exploration
effort. In this method, a Beta distribution with (a =1, =1)
is initially assumed for each action. At each instance, we
sample from each action’s distribution. Whichever action
gives us the largest sample value will be chosen. After the
action is taken and the result is observed. If it is a success, o
is increased by one. Otherwise, B is increased by one. This
process will be repeated each time an action needs to be
taken.

Boltzmann Exploration utilizes a similar strategy of
decision-making to ACT-R. The actions are taken
stochastically. Initially, the reward for all actions is assumed
to be equal. At each trial, the probability of taking an action
i, is calculated as follows:
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eUi/T
Pi B ZiEm eUi/T
where m is the set of all actions. The action is going to be
taken based on a discrete distribution with probabilities
calculated from this equation. After each trial, the
expected rewards for all actions are updated. This equation
indicates that as the chance of actions being taken is
proportional to the values of U, /T.
The parameter T is known as temperature. It controls the
randomness of the action. The higher the value of T, the
more randomness happens in action selection.

Methodology

In this study, we considered a simple coin flip game. Every
round, participants and models choose either head or tail. If
their choice matches the game's choice, the result is winning
the round and a message “Match” will show up. If the choices
do not match, the result is losing that round and a message
“Wrong” will show up. The probabilities of the computer
choosing head or tail are not equal. In 70 percent of the
occurrences, head will appear, and the tail will appear in 30
percent of the trials. This game is an online browser game and
is written in C# and was first used by (Tehranchi & Ritter,
2020) to study the number of trials needed for ACT-R to
match the probability of the biased coin. Figure 1 shows a
screenshot of the game when a user starts playing. The
models’ data of interactions with the game and their final
decisions are saved.

]

Your Choice

| Head |

| Tail | | Reset |

Figure 1: The game environment. It consists of a feedback
area (where the "Ready" sign is shown) and visual objects
(Head and Tail buttons). The feedback area will be changed
based on the result of the played round. It shows "Match" if
the choice is correct, and it shows "Wrong" if the choice is
incorrect.

The Coin flip game is played in an interactive environment.
In this environment, the interface is susceptible to change if
the user provides input. Every time a model chooses what to
play for that round and clicks on the buttons. The feedback
area is going to change. Also, the model continues to work
even if the location of the environment window is moved.
And because of that, the visual module implemented in ACT-
R cannot be used for this task.

The ACT-R Model

ACT-R’s actions that play the game can be broken down into
several subtasks. Each subtask consists of some production
rules that ACT-R uses to play the Coin flip game.

Every visual object on display will be represented by a set of
unique features for the visual module. Chucks are created by
these features that provide declarative memory, the
representation of the visual scene by the vision module.
These chucks are visual location and visual object types.
Production rules' constraints can match the chunks. The
model consists of 3 visual objects, “Ready”, “Heads”, and
“Tail”, in addition to 15 declarative memory chunks and 12
production rules. Production rules execute shifting attention,
finding the ready icon to start, choosing heads or tail,
clicking, finding the visual feedback, and assigning reward
value to the results. The reward value for matching is 6 and
in case of wrong, the reward value of zero is assigned. The
Utility Value and the sub-symbolic computations parameter
are set to true. The value of temperature varies based on the
decision-making strategy we are trying to replicate. All the
other parameters are set to default.

Starting the Game

The model looks for the visual object "ready". If it finds it,
the model is ready to choose an action. At this point, the
reward (Utility) function for all the choices is equal.

Taking an Action
Based on the reward function, the model will take an action,
retrieves the visual object corresponding to that action, moves
the cursor to the visual location, and clicks. Each action has
a probability of being taken. The probability for action i is
calculated using the Boltzmann Equation:

eUi/\/ES

Probability (i) = m

J

Where the summation j is over all the productions which
currently meet the conditions required. ACT-R multiplies the
temperature value (T in Boltzmann Equation) by the square
root of two.

After the model decides what action to take, the model needs
to find the visual object corresponding to that action and
select (click) it. For this task, VisiTor first finds the location
of the visual objects on the screen by Template Matching
capability of the OpenCV Python library. The templates are
predefined and saved as an image. Then, VisiTor will save
that visual object as an image. In order to assure than VisiTor
is robust to rescaling and size, different sizes of the template
are checked. Then, VisiTor moves the mouse to the location
of that object and clicks.

Looking for Feedback

After taking an action, the model expects feedback. The
model tries to find which of the feedback visual objects is
shown on the screen. The model first retrieves them into the
memory module and then utilizes VisiTor. VisiTor search for
the feedback visual object that is appearing on the screen.

Updating the Reward Function
Based on the feedback, the model updates the reward
function for the action taken in the last step.
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Uim) =Uin—1) + o[ R;(n) — U;(n — 1)]

Where:

e s the learning parameter

e R;(n) is the effective reward value given to

production i for its n" usage

e U;(0) is the initial utility value for production i
Then the model goes back to the Taking an action section and
repeats the whole process.

Similar to ACT-R, RL models follow the same set of
actions to play the game. The only difference is how the
reward function is updated and the decision-making strategy.
Here, we tried Epsilon Greedy, Boltzmann Exploration,
Thompson Sampling, and PyIBL to analyze the differences.
In this section, we will elaborate on the decision-making
process of each model and what decision-making strategy
they utilize in the coin flip game.

PyIBL Model

PyIBL uses the concept of blending to calculate the utility
value of each choice in its decision-making process (Lebiere,
1999). The blending mechanism consists of activation, base
level activation, weights, utilities, noise, and temperature.
Activation
A fundamental part of retrieving an instance from the PyIBL
model’s memory is computing the activation of that instance.
The value of the activation is based on (a) how frequently and
recently it has been experienced by the model and (b) how
well it matches the attributes of what is to be retrieved. The
activation is calculated based on the following formula:

Ai = Bi + €;
Where:

e A;: Activation of chunk i. It is also called “match
score” M;

e B;: This is the base-level activation and reflects the
recency and frequency of use of the chunk. We
elaborate on this and how to calculate this more

e ;. Anoise value

Base Level

The base-level activation, B;, describes the frequency and
recency of the chunk i. Its value depends upon the decay
parameter of Memory, d. The base level activation is
computed using the amount of time that has elapsed since
each of the past appearances of i, which in the following are
denoted as the various t;;.

Bi =In Z tl;d

J

Activation Noise

The activation noise, €;, implements the stochasticity of
retrievals from Memory. It is sampled from a logistic
distribution centered on zero. It is normally resampled each
time the activation is computed.

Blending
A weight is calculated for chunks using their corresponding
activation values to present the contribution of chunks in the

blending value.
Aj
Wi =erT
With the activation values calculated for all the chunks
corresponding to an action, the blending value is calculated

as follows:
ey
= ui
Zjeij

ieEm
Lastly, the action with the largest blending value is taken. If
the outcome is already represented by a chunk, the base level
activation will be updated. If not, a chunk will be created to
represent the outcome in the next blending equation.

Deep Reinforcement Learning

First, a Neural Network predicts the outcome of each action
based on the instances the model has seen so far. After each
trial, the outcome is observed. Using the observed outcome,
the model tries to tune the Neural Network parameters to
predict the outcome more accurately. The loss function for
the Reinforcement Learning model is defined as follows:

L = E[(U(s,a; 6;) — U(s,a))?]
Where the first term is the Neural Network predicted reward
function and the second term is the actual reward observed
by the model. 6 represents the Neural Network parameter.
To take an action, the model predicts the reward value for all
actions. The reward values are important for all decision-
making strategies. Different actions might be taken
depending on what decision-making strategy is used. Figures
2 and 3 show the flow chart of how Epsilon Greedy and
Thompson Sampling play the coin flip game.

Results

The reward value that is assigned to match or wrong visual
objects is an important factor in models’ convergence. In case
of a small difference between the reward of a match and
wrong, all models fail to learn bias and fail to show any
decision-making strategy. With a proper choice of reward
value, all the models show that they are capable of learning
the bias in less than 200 trials. Both ACT-R and PyIBL are
capable of implementing matching and maximizing decision-
making strategies. Figure 4 shows the effect of temperature
on the decision-making strategy of the PyIBL model. For
figure 4.a, the temperature value was set to one and for figure
4.b, the temperature was set to 14. For small values of
temperature, the PyIBL model will choose the maximizing
strategy. As the value of temperature increases, the decision-
making strategy move towards matching. If the value of the
temperature is set too high, the PyIBL agent will decide
completely random (i.e., 50 percent of the time, the PyIBL
model chooses head, and 50 percent of the time, it chooses
tail).

Figure 5 shows the effect of temperature on the decision-
making strategy of the ACT-R model. Figure 5.a displays the
proportion of head and tail chosen by ACT-R if the
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temperature is set to 3. In Figure 5.b, the temperature was set
t0 0.5.

Initizlize the
parameters and start

the process

Generate a random
number

Take the action with
Take a random action Is the value less than epsilon? the highest utility
value

Observe the outcome’

and update the utility

function based on the
feedback

Figure 2: The flowchart for the Epsilon Greedy algorithm
contains five processes and one conditional operation. In
each step, with the probability of Epsilon, the model takes a
random action. Otherwise, it will select the action with the
highest predicted utility value.

Initialize all the
parameters for all
actions

Generate an
instance from the
distribution of each
action

Choose the action
with the highest
instance value

l

Update the reward
function based of the
result

Figure 3: Thompson Sampling Flowchart contains four
processes. The beta distribution is assigned to each choice.
At the beginning of the training, all parameters are equal to
1. Meaning that the model assumes that parameters are all
likely to generate an optimum result. At each step, samples
are taken from each action distribution. The biggest sample
determines what action should be taken. Then based on the

result, the distribution of the action taken is updated.

Similar to PyIBL, smaller values of temperature will result in
maximization and as the value of temperature increases, the
randomness of choices will increase. ACT-R shows more
sensitivity to the value of the temperature in comparison to
PyIBL. Meaning smaller changes in the value of temperature
in ACT-R will result in more noticeable shifts in decision-
making strategy.

Figure 6 shows the Epsilon Greedy maximizes the utility
by only taking actions with the highest reward. This is exactly
what is expected from this model. The Deep Reinforcement
Learning with Epsilon Greedy decision-making strategy is
designed to maximize the reward. The experiment shows that
the maximizing behavior of the model has started after the

fourth trial (where the reward value of the head became larger
than the tail). A bad sequence of random occurrences might
result in the model taking the wrong action as the maximizing
action and may not be able to recover.
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Figure 4: Probability of choosing Head (Blue) and Tail
(Orange) over 200 trials by PyIBL in the case of (a)
maximizing and (b) matching with different temperatures.
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Figure 5: Probability of choosing Head (Blue) and Tail
(Orange) over 200 trials by ACT-R in the case of (a)
maximizing and matching (b) using different temperatures.

Figure 7 suggests that Thompson Sampling started with
matching and then maximized after gaining confidence that
the estimated reward value of the head is larger than the tail.
Figure 8 shows the decision-making by Deep Reinforcement
Learning with Boltzmann Exploration. With the right value
of temperature, this model can imitate both matching and
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maximizing behaviors. In summary, all the models that
utilized the Boltzmann Equation in their action taking
(decision-making) strategy (ACT-R, PyIBL and Deep
Reinforcement Learning), are capable of both matching and
maximizing. Epsilon Greedy decision-making strategy
always results in maximizing. Thompson Sampling first
matches the probability of the coin and when it is confident
in the reward of the head is greater than the tail, it starts to
maximize the reward by choosing heads.
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Figure 6: Probability of choosing Head (Blue) and Tail
(Orange) over 200 trials by Deep Reinforcement Learning
with Epsilon Greedy decision-making strategy.
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Figure 7. Probability of choosing Head (Blue) and Tail
(Orange) over 200 trials by Reinforcement Learning with
Thompson Sampling decision-making strategy.

Conclusion

We analyzed different models such as ACT-R, PyIBL,
Reinforcement Learning with the Epsilon Greedy algorithm,
Boltzmann Exploration, and Thompson Sampling decision-
making strategies. We studied the models’ capabilities to
learn the bias and how they take an action. A web-based
biased coin flip game was developed where models can
interact and predict the next coin flip’s result.

The outcome of the coin flip game (i.e., match or wrong
visual objects) will be shown in the game environment. We
introduced VisiTor, a Python-based tool that can facilitate the
interaction between different models and task environments
in any programming languages.

The models utilized two main strategies to choose what
action to take. They can "Maximize," meaning they can select
the choice they believe has the highest probability of success
and maximize their outcome. Or they "Match™ the probability

of the actions. We showed that among the well-known
cognitive architectures and algorithms, ACT-R, PyIBL and
Deep Reinforcement Learning with Boltzmann Exploration
are capable of imitating all decision-making strategies by
setting the right set of parameters.
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Figure 8: Probability of choosing Head (Blue) and Tail
(Orange) over 200 trials by Deep Reinforcement Learning
with Boltzmann Exploration.

Epsilon Greedy and Thompson Sampling tend to "Maximize"
before the 200™ trial. However, Thompson Sampling tends to
"Match" at the beginning and then it will "Maximize" the
reward. The behavioral studies in this area believe people are
using the same set of strategies. However, which strategy is
used in what situations is still a topic of conflict. A more
systematic study needs to be conducted to show under what
circumstances people tend to minimize or maximize. Based
on the result, we will be able to see which model can simulate
human behavior and under what circumstances.

Future Works

In order to determine which model is behaving closest to
humans, a study needs to be conducted to analyze human
behavior. Models that utilize the Boltzmann Equation in their
decision-making strategy, can be tuned to Match or
Maximize. Behavioral studies in this area indicate mixed
results and may vary case by case. A systematic review is
needed in this area to categorize the results and analyze the
reason behind the mixed results that are reported by the
studies previously done to analyze human behavior. This
experiment needs to be conducted to determine if humans
tend to match, maximize, or combination of both.

Also, currently, visual objects need to be predefined for
VisiTor. A possible extension for VisiTor is to further extend
its capabilities by having the model define the visual objects
based on the human eye movement data. Users tend to pay
closer attention to the visual objects they utilize to play. In
the next version of VisiTor, we plan to have the model detect
visual objects based on the eye-tracking data.
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Abstract

The incredible specificity and fidelity of human memory en-
coding is thought to be supported by a process known as
pattern separation (Marr, 1971). Behaviorally, this is typ-
ically inferred via performance in the Mnemonic Similarity
Task (MST; (Stark, Kirwan, & Stark, 2019)), an object recog-
nition task with added similar “lure” images, from which a
key metric, the Lure Discrimination Index (LDI) is calculated.
Supported by an extensive literature validating its predictive
power, this measure is gaining increasing use as a diagnostic
of cognitive decline and neurological dysfunction. It is how-
ever unclear the exact mechanism through which this behav-
ioral measure of pattern separation reflects the underlying neu-
ral computations. In particular, choices alone cannot in prin-
ciple distinguish the degree to which a given behavior results
from signal-based discrimination of the object in question (i.e.
the putative separated patterns) versus a more general tendency
to inhibit or excite responses (e.g. response caution). Here, we
distinguish these potentially co-contributing factors by model-
ing response times using a sequential sampling framework that
identifies independent contributions to choices made by signal-
noise discrimination and response thresholding. Across two
independent datasets encompassing a lifespan sample (total
N =307, ages 8-89), we find evidence that both factors reliably
contribute to response behavior, but that signal discrimination
is both more strongly correlated with Lure and Foil discrimi-
nation and more stable within-individual than response thresh-
olding, suggesting that this model-derived parameter may be
a more specific and reliable measure of the underlying trait of
interest in studies of pattern separation.

Keywords: memory and discrimination; evidence accumula-
tion; recognition

Introduction

How do individuals encode objects in memory, and how does
the distinctiveness of encoding affect behavioral expressions
of recognition? These functions are thought to be supported
by a process known as pattern separation, whereby simi-
lar sensory or latent input patterns are projected into higher-
dimensional space to create highly distinct patterns that sup-
port later discrimination among fine degrees of difference
(Stark et al., 2019). Traditionally, this process has been at-
tributed to the hippocampus, a critical brain structure for
learning and memory (Long, Lee, & Kuhl, 2016; Marr, 1971;
Stark et al., 2019). Computational models predict that the
more distinct object representations are (i.e. the “better” an
individual is at pattern separating), the better an individual
will be able to discriminate between objects that were seen
previously and those that weren’t. In particular, people who
are better at pattern separating should be less susceptible to
interference when novel objects are similar to the previously
seen objects.

The most widely used behavioral measure of pattern sepa-
ration, known as the Lure Discrimination Index (LDI), stems

from the 3AFC Mnemonic Similarity Task (MST), a modi-
fied object recognition task (Stark et al., 2019). In the typical
version of this experiment, individuals first complete a learn-
ing phase where they study a collection of object pictures.
Then, during the recognition phase, individuals see a series
of objects of one of three types: repeats, or objects they had
seen before during learning; lures, which vary in degrees of
similarity to the repeats; and foils, which are totally new ob-
jects never seen before in the experiment. Thus responses on
these three trials can be analyzed to quantify how sensitively
an individual discriminates between what they have, and have
not seen before. This measure, the LDI, has been shown to
correlate with standard behavioral and physical measures of
cognitive decline and neurological dysfunction (Stark et al.,
2019).

It is however an open question as to what aspects of recog-
nition memory behavior are measured by the LDI. Specifi-
cally, it is unclear to what degree LDI solely reflects the ac-
tual “separation” of the underlying memory representations
(in Signal Detection Theory terms, the separation between
signal and noise distributions), versus more general response
selection processes (e.g. the threshold for response execu-
tion). To the extent that LDI is indeed a measure consistent
with hippocampal pattern separation, we would predict the
latter: that it would correspond with an increase in signal to
noise ratio (Long et al., 2016).

Sequential sampling models of response time provide an
excellent method to assess these separable influences on
recognition memory. This family of models, specifically the
Linear Ballistica Accumulator which we use in this paper,
robustly distinguishes separable contributions to behavior of
both signal-noise separation (as drift rate) and response ex-
ecution (as threshold/boundary or starting point) (Brown &
Heathcote, 2008).

Here, we model response times to examine the relation-
ship between LDI and components of the recognition mem-
ory process. We find evidence for both processes contribut-
ing to measured LDI, examine their relative contributions to
choices, and assess their ability to predict behavior out-of-
sample. Our results support the suggestion that LDI can be
decomposed to isolate a stable, separable signal-based mea-
sure of memory discrimination. This measure may further
improve the reliability and precision with which clinical prac-
titioners can assess a key transdiagnostic process underlying
a wide array of disorders and neurological conditions.
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Methods
Data and Experiments

We model two data sets of individuals that completed the
Mnemonic Similarity Task (MST). In this task, participants
initially completed an “encoding” phase where they catego-
rized unique objects as either belonging indoors or outdoors.
They were also told that they would be subsequently tested
on their memory of these objects.

Then, participants made a sequence of recognition choices
during the “test” phase where they identified each object as
either a repeat (seen before during the encoding phase), lure
(similar to an object seen during encoding), or foil (a brand
new object). Participants saw % repeated objects, % lures,
and % foils. There was no feedback after each choice (i.e.
participants were not informed if their choice was accurate
or not) and subjects had up to 10s to make a choice. The
presentation order was fully randomized.

Experiment 1 We model n = 223 adult subjects (ages
18 — 89, median = 41, 141 female). Subjects saw 128 trials
during the encoding phase, and made 192 recognition judge-
ments during the test phase. The data was collected in two
modalities: online via Amazon mTurk (n = 173) and in per-
son (n =72).

Experiment 2 We model n = 84 subjects (ages 8 — 25, me-
dian = 15, 53 female). Subjects saw 64 trials during the en-
coding phase, and made 96 recognition judgements during
the test phase. The data was all collected online via Amazon
mTurk. All participant ages in Experiment 2 were verified
using photographs of government-issued identification cards.

Choice Behavior Measures

To quantify memory discriminability, we compute the Lure
Discrimination Index (LDI) as in (Stark et al., 2019).

LDI = P( Lure Response | Lure Trial )

(1)
— P( Lure Response | Foil Trial )

The LDI provides a sensitive measure of how reliably an indi-
vidual distinguishes object photographs that were seen during
the encoding phase from similar ‘lures’ presented during the
test phase. This measure is typically interpreted as robust in
that the more distinctly an individual encodes a previously
seen object, the less they will subject to interference from
both similar lures and unrelated foils. We further compute an
individual’s Recognition Score (RS), which quantifies how
well someone remembers previously seen objects:

RS = P( Repeat Response | Repeat Trial ) @
— P( Repeat Response | Foil Trial )

Response Time Modeling

We model response times (RT) using a Linear Ballistic Ac-
cumulator model (LBA) (Brown & Heathcote, 2008). The
LBA is a powerful sequential sampling model that differs

from other sequential sampling models in the following criti-
cal ways: a) it can fit n responses (nAFC), b) it assumes that
evidence in favor of each alternative is accrued independently,
and c) that evidence accumulation itself is linear and noise-
less. The LBA does remarkably well in fitting response times
and recovers standard patterns in RT data (Brown & Heath-
cote, 2008).

We use the R package rtdists (Singmann et al., 2018) to im-
plement the LBA. We adhere to the assumptions of the most
simple LBA in that we allow each individual to have the same
starting point bias (A), evidence boundary (b, with b > A),
and non-decision time (fy). However, we allow for the drift
rates to vary by accumulator (3 accumulators for 3 response
types) and apply the scaling constraint that all drift rates must
sum to 1 (i.e. }_,v; = 1). Drift rates are drawn from a Nor-
mal distribution which has a common standard deviation (sv)
across all three accumulators. We use Maximum Likelihood
Estimation (MLE) to fit all parameters to individual subjects.

Results

In Experiment 1, we excluded a total of 20 subjects (13 for
below chance accuracy, 7 for LDI scores below zero) result-
ing in a total of 255 subjects with valid data. In Experiment
2, we excluded a total of 10 subjects (5 for below chance ac-
curacy, 5 for LDI scores below zero) resulting in a total of 74
subjects with valid data.

Choice Behavior

In Experiment 1, individuals chose the correct response 71%
of the time. They were most often correct on Repeat trials
(40% of correct responses) and Foil trials (38 %), followed by
Lure trials (22%). In Experiment 2, individuals also chose the
correct response 71% of the time. They were most often cor-
rect on Repeat trials (39% of correct responses) and Foil trials
(38 %), followed by Lure trials (23%). LDIs were compara-
ble across experiments (mediang; g» = 0.37(.3), Figure 1).
Recognition scores were similarly comparable (mediang; =
0.78(.16), mediang, = 0.78(.19)).

Response Time Modeling

In Experiment 1, median (IQR) RTs for each response type
were as follows: Repeat = 1.14(0.42), Lure = 1.29(0.47),
and Foil = 1.16(0.46). In Experiment 2, median (IQR) RTs
for each response type were as follows: Repear = 1.07(0.43),
Lure = 1.29(0.43), and Foil = 1.12(0.45).

Our LBA parameter inferences are presented in Table 1.

Both experiments show the highest median drift rate on the
Repeat accumulator, followed by the Foil accumulator, and
lastly the Lure accumulator. Both experiments show that sub-
jects have the same median response caution, which is often
defined as the difference between the boundary and starting
point (b — A, median = 0.28).

We next confirmed qualitatively that our model had
good descriptive adequacy. To do this, we over-
laid predicted RT quantiles on observed RT quantiles
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Figure 1: Lure Discrimination Indices for both experiments
median(IQR) = 0.37(0.3).

Parameter Exp. 1 Exp. 2

Starting Point (A) 0.42(0.21) 0.45(0.28)
Boundary () 0.70(0.21)  0.73(0.27)
Non Decision Time (¢;) 0.45(0.22) 0.39(0.20)
Drift: vRepeat 0.39(0.12)  0.39(0.13)
Drift: Viure 0.26(0.15)  0.27(0.13)
Drift: o 0.36(0.06)  0.34(0.06)
Drift: Standard Deviation  0.24(0.32)  0.24(0.27)

Table 1: Maximum Likelihood Estimates (median(IQR)) for
LBA parameters for both experiments. We fit a total of 6
parameters and the seventh, drift rate for the Foil accumulator
IS VR =1— VRepeat — VLure-

(10%,30%,50%,70%,90%). We present an example of sub-
ject fits across ages and correct/incorrect responses in Figure
2, noting that most subjects were qualitatively well fit by the
data.

Relating LBA to MST

As our key question of interest focuses on relating LBA pa-
rameters (components of an individual’s memory retrieval
and recognition processes — in particular drift rates and
boundary) to how distinctly people encode memories, we
assessed whether there were any correlations between the
LBA parameters and behavioral scores (LDI and RS). We
report Kendall’s T rank correlation coefficient in the follow-
ing analyses and adjust for multiple comparisons using the
Bonferroni-Holm correction.

We found significant correlations between drift rates and
LDI as shown in Figure 3. In particular, we found a negative
correlation between the drift rate for the Repeat Accumulator
and LDI in Experiment 1 (Tkendan = —0.276,p < 0.01) and
Experiment 2 (Tkendal = —0.20, p < 0.05) trials. We further

10
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Figure 2: Example plots where observed quantiles are over-
laid with predicted quantiles for subjects old and young, cor-
rect and incorrect. Purple markers are observed RT quantiles
for repeat trials, red for lures, and green for foils. Black lines
are predictions from LBA. The horizontal vertical line repre-
sents the true proportion of repeat, lure, and foil trials (%).

found a positive correlation between the Lure Accumulator
drift rate and LDI in Experiment 1 (Tkendanl = 0.15, p < 0.01).
Finally, the correlations between drift rates for the Foil Accu-
mulator and LDIs in Experiment I or Experiment 2 were not
significant after adjusting for multiple comparisons.

We also observed a significant negative correlation
between response caution (b — A) and LDI (Tgendan =
—0.14, p < 0.05) in Experiment 1 only.

Correlation Strengths To compare correlation strengths,
we used bootstrapping to resample the data and calculate
Kendall’s ts and the differences between each pair of Ts (e.g.
T4 — Tp). We then examined whether the bootstrapped 95%
confidence interval distributions of the differences between
each pair of correlations included zero. If they did not include
zero, we interpreted this as evidence in favor of a non-zero
difference between the correlations compared.

Critically, we found that in Experiment I, all three
of the bootstrapped distributions of correlation differences
between LDI and boundary, and LDI and the three ac-
cumulator drift rates did not include zero: boundary-
Repeat (0.0973,0.282), boundary-Lure (—0.492,—0.218),
boundary-Foil (—0.412,—-0.1479), Figure 4. We note that
the CIs go in opposite directions for the Repeat vs Lure
and Foil accumulators because of the negative correlation be-
tween LDI and Repeat accumulator drift rates. These results
also held when we compared correlation strengths between
response caution and the three accumulator drift rates: re-
sponse caution-Repeat (0.054,0.265), response caution-Lure
(—0.456,—0.137), response caution-Foil (—0.397,—0.139).
In Experiment 2, however, all of the CIs contained
zero: boundary-Repeat (—0.139,0.298), boundary-Lure
(—.451,0.052), boundary-Foil (—0.350,0.105). Again, the
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same held for response caution: response caution-Repeat
(—0.142,0.272), response caution-Lure (—0.312,0.101), re-
sponse caution-Foil (—0.345,0.125)

We also found that the correlations between the drift rate
accumulators and LDIs were significantly different in Exper-
iment 1. Specifically, the LDI-repeat accumulator thresholds
were stronger than the LDI-lure accumulator drift (-0.680, -
0.326) and the LDI-foil accumulator drift (-0.565,-0.309). We
further found that the correlation between LDI-lure accumu-
lator drift was stronger than the LDI-foil accumulator drift
(0.026,0.357). In Experiment 2, we only found that the LDI-
repeat accumulator drift correlation was significantly greater
than the LDI-foil accumulator drift (-0.381,-0.043).
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Figure 3: Correlations between Accumulator drift rates and
the LDI across both experiments. We find statistically signif-
icant correlations between the drift rate of the Repeat accu-
mulator and LDI in both experiments (tg; = —0.276, Tgy =
—0.26). We further find a significant correlation between the
drift rate of the Lure accumulator and LDI in Experiment 1
(TEI = 0.15)

Stability of Measures

Given the correlation between LDI and drift rates in both ex-
periments, we wanted to see if the drift rate may in fact be a
more stable behavioral measure than LDI. To evaluate the sta-
bility of the fit parameters and behavioral measures, we per-
formed a split-halves analysis. Specifically, for each subject,
we separately estimated each parameter and metric of interest
on randomly selected halves of trials. We then computed the
Mean Square Error for all parameters fit (both in the response
time modeling and in choice behavior), Table 2. Specifically,

11

Exp. 1

Repeat
Lure

2001

-0.6 -04 -0.2 0.0 0.2 04

Boostrapped correlation differences between boundary and drift rates

Figure 4: Boostrapped correlation differences between
boundary and LDI, and drift rate and LDI for the three differ-
ent accumulators in Experiment 1. All three 95% Cls do not
include zero: boundary-Repeat (0.0973,0.282), boundary-
Lure (—0.492,—0.218), boundary-Foil (—0.412,—0.1479).

we calculated LBA measures, LDI, and Recognition Scores
twice for for all odd numbered trials, and all even numbered
trials separately.

Parameter Exp.1 Exp. 2

Starting Point (A) 0.049(0.014)  0.045(0.023)
Boundary (b) 0.028(0.011)  0.034(0.020)
Non Decision Time (fp) 0.042(0.013)  0.112(0.036)
Drift: VRepeat 0.009(0.006) 0.026(0.017)
Drift: Vi ure 0.010(0.007)  0.019(0.015)
Drift: v 0.007(0.005)  0.021(0.016)
Drift: Standard Deviation ~ 0.04(0.013)  0.067(0.028)
Lure Discrimination Index  0.017(0.008)  0.034(0.020)
Recognition Score 0.008(0.006) 0.018(0.014)

Table 2: Mean square errors (Standard Error) for all param-
eters estimated by the LBA model and (below the line) for
standard behavioral measures derived from the MST.

Supporting the hypothesis that signal discrimination is a
stable measure within-individual, we found that the MSE of
the drift rates for all the accumulators were the lowest in both
experiments. We note that the degree of stability is an or-
der of magnitude greater than all the other parameters in Ex-
periment 1, the larger dataset with more trials per subject.
To quantify differences between MSE across LBA and be-
havioral parameters (i.e. stability in measurements), we use
the non-parametric paired Wilcoxon Rank Sum test and again
correct for multiple comparisons using the Bonferroni-Holm
correction. We found that the drift rates were more stable than
all other LBA parameters (p < 0.01) and both behavioral pa-
rameters (LDI, Recognition Score p < 0.01) in Experiment 1.
In Experiment 2, we found that drift rates were significantly
more stable than all the LBA parameters (p < 0.01) except
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the non-decision time, which was trendingly significant after
correcting for multiple comparisons (0.05 < p < 0.08). How-
ever, like in Experiment 1, the drift rates were more stable
than both behavioral parameters (p < 0.01).

Discussion

We present one of the first model based analysis of response
times in the Mnemonic Similarity Task (MST). We use a sim-
ple sequential sampling model, the Linear Ballistic Accumu-
lator (LBA), where evidence is accumulated independently
for all three possible responses.

Our approach decomposed responses for this task into sep-
arable components of response execution and signal detec-
tion, allowing us to assess the individual stability of these pro-
cesses, across subjects. We hypothesized that either or both
the response caution (either boundary, b, alone or boundary
minus starting point, b — A) or drift rate,v;, to lure or foil trials
would be key variables of interest for behavioral discrimina-
tion performance. Specifically, if the LDI is indeed a measure
of pattern separation, we would expect higher drift rates on
Lure and/or Foil accumulators, suggesting a boosted signal.
At the same time, to the extent LDI reflects individual vari-
ability in response caution, boundary, or starting point bias,
then this would be reflected in these terms.

We found that, although both parameters were significantly
correlated with LDI, the drift rates were both a stronger pre-
dictor of the standard behavioral measure and also a more
stable within-subject measurement. The latter point is of con-
siderable interest given the extensive evidence that MST is a
useful individual difference marker, predicting neurological
dysfunction and cognitive performance in a wide variety of
clinical and laboratory measures (Stark et al., 2019).

The finding that LDI is strongly influenced by evidence
strength supports the suggestion that MST measures the de-
gree of pattern separation underlying these responses. Fur-
ther, our findings may enhance the application of MST in sev-
eral ways. First, the finding that drift rates are a more stable
within-subject measure suggests that it could be used to more
finely predict the same sorts of outcomes currently predicted
by LDI. Future work should examine the correspondence of
this drift rate to cognitive and neurological outcomes of inter-
est. Second, the use of sequential sampling models can enable
extracting trial-by-trial timeseries reflecting putative underly-
ing computations that drive behavior, which should support
analysis of more precisely defined functional neuroimaging
measures (Long et al., 2016). Finally, the robust statistical
frameworks often used to fit these sorts of models may al-
low further refinement of the approach, producing even more
stable trait-level estimates by, e.g., incorporating informative
priors and models of contaminant behavior.

In sum, we have provided initial evidence that joint mod-
eling of choices and response times can improve inference
of trait-level properties underlying a widely used clinical and
laboratory assessment tool. Future work will examine the ro-
bustness of this new metric in the many settings in which the
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MST has been applied.
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Abstract

Reinforcement learning, and particularly Temporal Difference
learning, has been inspired by, and offers insights into, the
mechanisms underlying animal learning. An ongoing chal-
lenge to providing biologically realistic models of learning is
the need for algorithms that operate in continuous time and
can be implemented with spiking neural networks. This pa-
per presents a novel approach to Temporal Difterence learning
in continuous time — TD(0). This approach relies on the use
of Legendre Delay Networks for storing information about the
past that will be used to update the value function. A com-
parison of the discrete-time TD(n) and continuous TD(0) rules
on a simple spatial navigation RL task in a largely non-spiking
network is presented, and the theoretical implications and av-
enues for future work are discussed.

Keywords: Reinforcement Learning; Temporal Difference
learning; continuous time; Legendre Delay Network

Introduction

Reinforcement Learning (RL), as opposed to supervised
learning, is a plausible description of animal learning. An-
imals must learn through continual interaction with their en-
vironment, and often demonstrate competence after very few
interactions. While RL models of learning are useful, their
implementations ignore fundamental aspects of biological
implementations. In this paper we present a method of im-
plementing continuous-time Temporal Difference (TD) learn-
ing rules with finite memory using a biologically plausible
component, the Legendre Delay Network (LDN), a recurrent
neural network that optimally represents time-varying signals
over a finite history window (see Figure 1).

Psychological studies of animal learning have inspired
many core RL algorithms, and similarities have been found
between structures and signals in the mammalian brain and
RL models. Dopaminergic neurons, thought to encode reward
prediction error (Schultz et al., 1997; Cohen et al., 2012),
similar to the TD error signal (Sutton, 1988; Sutton & Barto,
2018), project into the dorsal and ventral subdivisions of the
striatum (Bjorklund & Dunnett, 2007). These regions, in turn,
have been hypothesized to function like the actor and critic of
Actor-Critic (AC) models (Joel et al., 2002).

These authors contributed equally.
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Figure 1: A spiking neural network was used to implement
the critic portion of an Actor-Critic network. The lower plot
shows a snippet of the value function learned by the network.
An LDN was used to remember this output and a delayed
value signal was decoded from this LDN and plotted. The
top spike raster plot displays the spiking activity of neurons
from the population representing the LDN memory.

TD learning reflects dopaminergic neurons’ behaviour dur-
ing an association task wherein repeated exposure to a
conditioned-unconditioned stimulus (CS-US) pairing results
in excitation at the time of the learned CS (Schultz et al.,
1997). The model further predicts a larger prediction error
in response to unexpected rewards compared to expected re-
wards, and a smaller prediction error when a predicted reward
is omitted than when it is received. Both of these predictions
are also reflected in the behaviour of dopaminergic neurons
(Schultz, 1998; Cohen et al., 2012; Nakahara et al., 2004).

Despite the similarities between the TD error signal and
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neural correlates of RL, discrepancies between TD learning
and biological RL remain. Namely, TD learning rules often
operate in discrete time. The schedule of events — state tran-
sitions, actions taken, rewards received — must be described
in terms of discrete time steps.

When TD learning rules are implemented for training ar-
tificial systems, they operate in a retrospective manner; the
value of the state visited in a previous time step, ¢’ < ¢ is
updated according to the rewards received between then, ¢/,
and now, f. For example, the value of the state s,_; is up-
dated according to the discounted value of the state the agent
is currently in (i.e. s;) and the reward received at time ¢.
TD(n) (Sutton & Barto, 2018, §7.1) improves the estima-
tion of a state’s value by updating the state value estimate
using the states s;_p,...,s; and the corresponding rewards
Tt—nyeooylt.

The difficulty with these approaches that make them bi-
ologically implausible is that the TD formulation requires
memory that is discretized across time steps. Spiking neu-
rons, however, evolve in continuous time. Making spiking
neurons implement discretized memory requires extra neural
machinery.

The gap between TD and neural behaviour could be closed
by using progressively smaller time steps, but this would re-
sult in larger memory requirements and longer training times
to find the optimal policy. Consequently, to create RL models
that more closely reflect biological systems, and that can cope
with more complex problems, we need TD learning rules that
exist in continuous time.

To address this problem we present a continuous time
TD learning model using a recurrent neural network mem-
ory, the LDN, that is formulated in continuous time and is
a biologically-plausible memory unit (Voelker & Eliasmith,
2018). An additional benefit of using the LDN is that our
model naturally adapts to memories with arbitrary lengths.
This is useful in mapping the TD(n) algorithm to a biolog-
ically plausible model that does not require additional re-
sources as 1 grows.

We begin by reviewing prior approaches to continuous
time RL, both non-spiking and spiking models of learning.
We then introduce the principles of the Neural Engineering
Framework, and the Legendre Delay Networks, which we use
in this work. We then outline our modelling approach and de-
scribe TD(0), our novel continuous time variant on the TD(n)
learning algorithm. Next, we demonstrate TD(0) working on
a continuous time RL task and in a spiking neural network.
Finally, we discuss particular advantages of this continuous
approach to modelling RL, as well as future directions for
research.

Review

There has been past work on implementing RL algorithms
in continuous time with spiking neural networks (Frémaux et
al., 2013; Rasmussen et al., 2017). In such set-ups with on-
line learning, future values are not available for TD learning.

14

Instead, current estimates must be used for training past es-
timates. Obtaining the past activity of spiking neurons for
such updates is a challenge. The Actor-Critic (AC) model
in Frémaux et al. (2013) does not actually compute TD sig-
nals with spiking neurons to avoid this. The hierarchical rein-
forcement learning (HRL) model in Rasmussen et al. (2017)
addresses the challenge by using two identical neural pop-
ulations to represent current and delayed Q functions, with
mechanisms for copying learned weights from one popula-
tion to the other. This is similar to a TD(0) algorithm with
a target network. However, the delay used is fixed in ad-
vance and this model does not generalize well to learning
over longer time spans. Different tasks may require credit
assignment over time windows of different lengths and, in
many cases, better performance can be achieved by using re-
ward information over many time steps for updates. Work on
continuous time RL models — particularly ones that are bio-
logically plausible — is limited. The theoretical framework of
RL, Markov decision processes, can be formulated in contin-
uous time and optimal policies can be obtained by solving the
Hamilton—Jacobi—Bellman partial differential equation. This
approach was used in Doya (2000) to develop algorithms for
learning value functions and policies, which were found to
learn a non-linear control task faster than traditional discrete
time AC models. Continuous-Time Attention-Gated Mem-
ory Tagging (Zambrano et al., 2015) implements on-policy
SARSA learning in continuous time using a neural working
memory.

Background

Reinforcement Learning
Continuous-time RL is modelled as a continuous-time
Markov decision process. There is a set of environment
states, S and a set of agent actions, 4. At any time f,
the environment will be in some state, s(t) € S. The agent
will choose when to act and what action to take based on a
stochastic policy, a(t) ~ m(s(t)). These actions will affect
the state of the environment and the reward rate function,
R(t) = R(s(t),a(t)). The task in RL is to learn a policy to
maximize the expected discounted integral of future rewards:

max Ey { YR(t)dt] , (1)

T =0

where v € [0, 1] is the discount factor. The above function,
when at some particular state s at time #, is the value function.

V(s) = Ex [ /k :O¢R(t+k)dk s(t) = s}

One can also define the ‘Q’ function, Q(s,a), in which the
above expectation is also conditioned on the action taken at
time ¢t. A value (or Q) function can be learned by TD algo-
rithms that take advantage of the recursive relationship be-
tween successive values.

V)~ [ RO PVG040). O

2
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This expression can be used to update the value function.

V(s(t)) < V(s(t))+A [/I{ZOV‘R(t+k)dk+ern(s(t+9)) ,
“

where A is the learning rate, and the term in the square brack-
ets is the TD error. This update, as written, is for tabular RL,
in which the values of all states are stored in a table. To gen-
eralize to an infinite state space, one can model V (s) with a
neural network trained using the TD error.

A popular architecture in RL is the Advantage Actor-Critic
(A2C) model. In this setup, one learns both a value function
(the critic) and a policy (the actor). The actor is used to select
actions, while the critic is used to train the actor using the
advantage function,

A(s,a) = Q(s,a) =V (s). Q)
This advantage function can be approximated with the TD
error signal.

Neural Engineering Framework

To create biologically realistic neural networks we require
methods for representing vectors by the activity of spiking
neurons, and to be able to perform computations on said vec-
tors via projections between neural populations. The Neural
Engineering Framework (NEF; Eliasmith & Anderson, 2003)
provides such methods in the form of three principles: repre-
sentation, transformation and dynamics.

The principle of representation explains how to encode a
vector, x € R?, in the activity of a population of neurons,
a(t) = GIEx+b], where E = [ey,...,ex]",€; € R? are en-
coder weights for the i € {1,...,N} neurons, b € R" are bias
terms, and G[] is the neuron transfer function. Our experi-
ments use the leaky integrate-and-fire neuron model for G|,
or it’s rate approximation. Representation also explains how
to decode the activity to recover the input vector, x. The
NEF’s transformation principle provides the method for set-
ting weights between two neural populations to compute a
desired function. Transformation is achieved by solving for
decoders — one for each neuron, d; — that compute a function
of a population’s input, instead of recovering the original in-
put. Decoders can be solved for ahead of operations if the
function is already known.

In this paper, our focus is on leveraging the principle of
dynamics. Dynamical systems can be encoded in a popula-
tion of spiking neurons using recurrent connections. It has
been stated that synaptic weights (or more precisely, popula-
tion decoders) can be optimized in advance if desired function
samples are available. However, if the desired transformation
is not known in advance, for example, the mapping between
states and values in RL, online learning rules can be used to
modify synaptic weights. The Prescribed Error Sensitivity
(PES; MacNeil & Eliasmith, 2011) is a biologically plausi-
ble supervised learning rule. To learn a connection between

15

a pre- and post-population of neurons, this rule modifies the
pre-population’s decoders in response to an error signal:

Ad; = KS(Z)Cl,’7 (6)
which is equivalent to modifying synaptic weights by
AW,'J‘ = —KO €; - S(I)ai @)

where x is a learning rate, a; are pre-population neural activ-
ities (filtered spikes), o; are post-population activities, €; are
the post-population encoders, and £ is an error signal we seek
to minimize. This signal may be computed by other neural
populations in a model. Biologically, we can think of those
populations as dopaminergic neurons that can modify weights
in this way via dopamine levels. Real data of spike timing
dependent plasticity is matched by PES when used in com-
bination with the unsupervised Bienenstock, Cooper, Munro
(BCM) learning rule, which sparsifies weights (Bekolay et
al., 2013).

Legendre Delay Network

Consider the problem of computing a delay of some signal
u(t) (for example, computing a delayed reward for TD up-
dates) using a recurrent neural network. In deep learning,
recurrent networks are typically trained in a supervised fash-
ion using backpropagation-through-time. However, this is
not biologically plausible. In real behavioral tasks, exam-
ples of “correct” behavior are generally not available and,
instead, learning must be done using only temporally sparse
rewards. Additionally, it is unknown how derivatives of spik-
ing activity would be calculated in the brain and propagated
through multiple layers of neurons. Furthermore, the same
connections and weights are used in its forward and back-
wards passes, but real synapses are unidirectional.

In this work we use properties of Legendre polynomial rep-
resentations of time varying-functions, and the Legendre De-
lay Network (LDN; Voelker & Eliasmith, 2018) to encode
history. Legendre polynomials are orthogonal basis functions
that can be used to represent functions over fixed input win-
dows. We use the shifted Legendre basis polynomials, de-
fined by the functions Py(r) = 1, P (t) = 2t — 1, and the recur-
sion (n+ 1)P,11(t) = (2n+ 1)P,(t) + nP,—1(t). The polyno-
mials are defined over the domain [0, 1], and the coefficients
of the Legendre representation of a function f(¢) over a win-
dow [t,+6] are a, = 5L t”“e f(O)P,((t—1)/0)dT. A rep-
resentation using the first g polynomials is said to have an
order of q. Legendre polynomials are orthogonal, such that
folPi(t)Pj(t)dt = ﬁ when i = j and zero otherwise. The
LDN is a dynamic system that approximates the Legendre
polynomial coefficients of an input signal over a sliding his-
tory window of length 8 € R™. The coefficients are repre-
sented using the LDN’s memory state, m € R?, for an or-
der g Legendre representation. m is updated according to
m(t) = Am(¢) + Bu(r), where u(¢) is the input signal. To ef-
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Figure 2: Screenshot of the 8 x 8 Mini-Grid environment.
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Methods

In the case of RL, the PES learning rule can be used to modify
synaptic weights in response to the TD error signal. Such
errors are typically written as an update to the value function
at time ¢ using future information (rewards and/or values at
time -+ 1,142, etc.). When learning online, the network does
not have access to future information — it only has access to
present values and the past via an LDN memory. This means
that we will update the value function in the past (at say, ¢ —0)
using information obtained since then. This requires the use
of neurons’ past activities in the PES update.

Assume we have a population of N neurons representing
the state, s(¢) € RY. Let m, ;(1) € R9*N be the LDN memory
of the j'* neuron’s activities (a filtered spike train). Then the
PES update is given by

Ad; =xE(1)P%(0)m,; (1), )
where P9 () € R!*4 is the vector of the shifted Legendre
polynomials (of degree one to ¢q,), evaluated at 6. The sim-
plest RL learning rule that can be implemented in this way is
the TD(0) rule — an update of the value at just a short time
in the past (t — Ar) using only the current reward rate. Let
my (z) € R? be an LDN memory of the value function. The
TD(0) error and PES update is given by

EO(1) = R(t) +V (1) — P% (A)my, (10)
Ad; = K(R(1) +YV (1) — P (Ar)my )P% (8)my, (1). (11)

Learning rules that use a longer history of rewards require
an LDN memory of the reward rate over time, mg € R7. A
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Figure 3: A diagram of AC network using LDN memo-
ries. Blocks represent neural populations, grey blocks indi-
cate populations representing LDNs, solid arrows represent
connections, and dotted lines represent weight modification.
LDNs are used to remember the reward received from the
environment and the value function. The output of these
LDNs projects onto the TD error population with connection
weights given by (13). This TD error, along with decoded
output from the LDN representing the activities of the state
neurons, is used to modify the connection weights between
the state and value populations via (14).

learning rule that uses the full 6 time window of the LDN
memories is

1
£0 (1) = / Y IR( —80)dT V(1) — V(1 — ), (12)
0

= (/()1¥1rpqr(e‘c)dt> mg(t) +yv(t) — P9 (0)my (1),
(13)
(14)

Adj = k€O (1)P% (0)my, (1).

This is the novel TD(0) learning rule. The discounted in-
tegral over the reward history can be directly computed from
it’s LDN representation and used to update the value function.
An experiment was conducted to demonstrate how a simple,
non-spiking version of this rule could be implemented, and
how its performance compares to the standard TD(n) learning
rule on a simple spatial navigation RL task. This experiment
is a preliminary exploration of the developed learning rule, in-
tended as a starting point from which to build a fully spiking,
biologically plausible model of RL in continuous time. For
this experiment, two AC networks were implemented, one us-
ing the standard TD(n) learning rule and the other using the a
non-spiking version of TD(0). Each network was then tested
on the Gym MiniGrid environment (Chevalier-Boisvert et al.,
2018).
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Figure 4: Schematic of the neural network. The TD update
(dashed line) is computed by the network in Figure 3.

Learning Task

For this demonstration, we used the 8 x 8 MiniGrid environ-
ment where the task is to learn how to navigate to a goal lo-
cation (see Figure 2). This environment consists of 6 x 6 (36)
possible locations. At each time step, the agent is able to take
1 of 3 possible actions (move forward, turn left, turn right).
At the beginning of each learning trial, the agent is initialised
in the top left-hand corner and goal location is the bottom
right-hand corner.

Per learning trial, the agent had a total of 200 time steps
in which to find the goal location. The trial would be termi-
nated either at the end of the 200 time steps or once the agent
had reached the goal, and the environment was reset for the
agent to try again. For each approach (TD(n) vs. TD(0)) the
network was run for a total of 500 learning trials, and we set
n=2.

Importantly, we found that when using TD(0), good per-
formance was obtained if the agent was made to wait for at
least 2 time steps in each state (i.e. spending a total of 3 time
steps in each state). We argue that this is because when the
agent was not made to wait, the duration of reward presen-
tation was too short, lasting only 1ms. By making the agent
wait, we extended the duration of the reward.

Actor-Critic Network

The AC Network was implemented in Python using the NEF
(Eliasmith & Anderson, 2003) (see Figure 4 for the network
schematic). The network’s input was the agent’s current state
(a 3D vector containing the agent’s x,y coordinate location
and the direction it’s facing), the most recent action selected
and the most recent reward. The state information was trans-
formed into a one-hot representation, which was then passed
to the hidden layer consisting of 3,000 rate neurons. The TD
update was performed in the rule node, and was used to train
the network’s decoder weights (Wyecoder). The network’s out-
puts were the updated state value, and a vector containing the
preferences for each action available to be taken in the next
time step.

17

1.0
0.8
©
©
= 0.6
[}
-4
< 0.4
S
o
|_
0.2 —— Baseline
—— TD(theta)
0.0
0 100 200 300 400 500

Learning Trial

Figure 5: Plot showing total reward per episode, across all
learning trials, for TD(n) Baseline and TD(0).

When using the standard TD(n) learning rule, rewards and
state values needed to perform the TD(n) update were stored
in arrays. However, with TD(0) where LDNs were used for
storing the rewards and values, the reward was passed into an
LDN node. The output from this node was the integral of the
discounted Legendre polynomials across the LDN window,

(fol yl’TP"’(GT)d’c) . A second LDN node (V(¢)) was used to

store the value of each state encountered. This value would
be retrieved n time steps later when it was time for that state’s
value to be updated.

Results

To assess the performance of each network we calculated the
total reward gained in each learning trial and plotted the re-
wards over the 500 learning trials for each approach. In the
case of TD(0), the total reward received at the end of each
learning trial was divided by 3 to correct for the wait time.
These results are shown in Figure 5. Both approaches show
similar performance; both seem to find an effective, stable
policy within 200 learning trials.

The learned value for each state (location and direction) in
the MiniGrid task was also calculated and is shown in Figure
6. These plots reveal that both the TD(n) and TD(0) networks
assigned high value to those states that led in a straight-line
path to the goal. This further suggests that both networks
were able to learn similar solutions for the task. The main
take-away from this is that the TD(0) rule allows us to solve
RL problems where the reward history is represented in con-
tinuous time. Given the potential for the LDN to be im-
plemented in a spiking neural network, this approach shows
promise for modelling RL in a more biologically plausible
way.

Discussion

This paper presents a novel, continuous time approach to im-
plementing TD learning. The proposed TD(0) is a version
of TD(n) that incorporates LDNs for dynamically maintain-
ing a memory of received rewards in continuous time. As
a preliminary exploration of the novel TD(0) learning rule,
an experiment was run comparing the performance of an AC
network on a simple grid-world task when using the standard
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Figure 6: The learned values for each state on the MiniGrid
task for TD(n) Baseline and TD(8). From left to right, these
plots show the learned values of each position in the MiniGrid
world when the agent is facing right, down, left and up.

TD(n) learning rule in discrete time vs. TD(0) for continuous
time. Figure 5 illustrates that TD(0) was able to learn a stable
policy in roughly the same number of trials as TD(n).

An advantage of this novel approach over other methods is
that it can be readily adapted for different lengths of memo-
ries without additional model complexity. With the standard
TD(n) rule, for example, additional memory resources must
be employed in order to use larger values of n. In contrast,
when using LDNs the only change needed to accommodate
a larger n is to increase 0 (the length of the LDN window).
The use of LDNs may also prove beneficial when applied to
the TD(A) learning rule, which requires resources to maintain
a memory of all previously visited states and their values, as
well as the eligibility trace which describes how recently and
frequently each state has been visited.

Further exploration is needed to establish whether the
novel TD(0) learns similar policies or produces behaviours
that deviate from existing TD learning rules. However, as
a preliminary finding, this result is promising. It should be
noted, however, that the TD(0) network did require that the
agent wait in each state in order to learn the task. First steps
for future work, therefore, will be to more fully explore the
effects of having the agent wait, and to establish why it was
needed. We will also explore possible alternative solutions to
mitigate any effects due to reward presentation duration.

The MiniGrid task used to test the novel approach is rela-
tively simple and formulated in discrete space and time. Fu-
ture work will therefore also focus on applying the novel
TD(0) rule to more complex, continuous problems. Addition-
ally, given that LDNs can be implemented in a spiking net-
work (Voelker & Eliasmith, 2018), by coupling this approach
with biologically plausible methods for representing contin-
uous state spaces such as Spatial Semantic Pointers (SSPs;
Komer et al., 2019), it is theoretically possible to implement
a critic network entirely in spiking neurons.

Online Resources

Experiment and analysis scripts can be found in the
github repository (https://github.com/maddybartlett/
Bio_Plausible Memory_Continuous_Time RL).
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Abstract

In previous work, we provided a neurally-based Actor-Critic
network with biologically inspired grid cells for representing
spatial information, and examined whether it improved perfor-
mance on a 2D grid-world task over other representation meth-
ods. We did a manual search of the parameter space and found
that grid cells outperformed other representations. The present
work expands on this work by performing a more extensive
search of the parameter space in order to identify optimal pa-
rameter sets for each configuration using one of four represen-
tation methods (baseline look-up table, one-hot, random SSPs
and grid cells). Following this optimization, the baseline, one-
hot and random SSPs methods did show improvement over the
previous study, in some cases showing performance as good
as grid cells. These findings, combined, suggest that whilst
the baseline and one-hot methods do perform well once op-
timized, grid cells do not necessarily require optimization in
order to produce optimal performance.

Keywords: Reinforcement Learning; grid cells; Spatial Se-
mantic Pointers;

Introduction

Humans and non-human animals are able to learn how to in-
teract with their environment in order to maximise rewards
through a process of trial and error (Mackintosh, 2019). This
ability has inspired the development of Reinforcement Learn-
ing (RL) methods for training artificial systems. The goal of
RL methods is to learn a policy of how to move through an
environment or perform a task in order to maximise reward
(Sutton & Barto, 2018). In the case of neurally-based RL al-
gorithms, this often involves implementing either a policy- or
value-based algorithm. With value-based approaches, a net-
work is provided with the current state s; as input and then
calculates the value of that state V(s;) with the longer-term
goal of maximising the value function V(s). Policy-based
approaches often involve again providing the network with
the current state and having the network produce a distribu-
tion indicating the likelihood of performing different actions
(@) in that state ([p(s;,a1), p(st,a2),...p(s¢,an)]). Regardless
of the approach taken, this is generally a more difficult task
than traditional neural-network learning because the network
needs to both learn about the task, and learn the right way to
represent the input data in order to produce the correct output.

In contrast, biological systems will, in most cases, already
have a representation that can be re-purposed for a novel task.
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Figure 1: Screenshot of the 8 x 8 Mini-Grid environment.

For example, in the case of spatial navigation, much evidence
points to grid cells as being involved in the encoding of spatial
locations. Grid cells are neurons that encode a representation
of space which takes the form of a repetitive hexagonal grid
pattern (Hafting et al., 2005). This distinction is often pointed
to as an explanation for why biological systems seem to learn
RL tasks faster than artificial systems.

Taking inspiration from biological systems in the context
of spatial navigation RL tasks has proved advantageous. A
study by Gustafson & Daw (2011) involved training a net-
work to solve a series of navigation tasks using a TD-based
network where the state representation was in the form of a
look-up table, place cells or grid cells. As a secondary find-
ing, Gustafson & Daw (2011) observed that, in most tasks,
the use of grid and place cell basis functions led to faster
learning than when the state was represented using a tabu-
lar basis function. A study by Banino et al. (2018) involved
generating grid cell representations of spatial information by
training a recurrent neural network to perform path integra-
tion. This grid cell network was then use in conjunction with
an Actor-Critic (AC) network and trained using deep RL to
solve navigation tasks. This study found that performance
when using this grid cell network was better than that of an
agent that used place cell representations of the state.

The Neural Engineering Framework (NEF) offers addi-
tional, alternative biologically-plausible methods for repre-
senting space (Eliasmith & Anderson, 2003). Not only does
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the NEF provide tools for implementing models based on
spiking neurons, but more recently spatial representations
(Komer et al., 2019) and grid cells (Dumont & Eliasmith,
2020) can be seen as special cases of a general vector-based
representation called Spatial Semantic Pointers (SSPs)

The current study is an extension of Bartlett et al. (in press)
in which different methods for representing the state were
compared in a spatial navigation RL task, including random
SSPs and grid cells. In the previous work, a total of 4 repre-
sentation methods (baseline, one hot, random SSPs and grid
cells) were compared by training TD-based AC networks (us-
ing either the TD(0) or TD(A) learning rules) to solve a simple
spatial navigation RL task. To avoid questions of the biolog-
ical plausibility of learning rules such as back-propagation,
we only applied the learning rule to a single layer of neu-
ral connection weights. This means that the network must
make use of the style of representation that is available to it,
rather than learning a custom style of representation for the
particular task. The previous exploration found that the use
of biologically-inspired grid cells for representing the state
resulted in the network learning to solve the task in fewer
learning trials. The present work expands on this by per-
forming a more thorough search of the parameter space for
each configuration, in order to find optimal parameter sets.
We then compare the optimized configurations to determine
whether the use of grid cells does in fact lead to improved
performance, or whether this finding was an artifact of the
manually selected parameter values used in the initial study.

Methods

Learning Task

For these experiments, we compared the performance of each
network configuration on the Gym MiniGrid navigation task
(Chevalier-Boisvert et al., 2018). Specifically, we used the
8 x 8 MiniGrid environment where the agent’s task on each
trial is to navigate to a goal location. This environment con-
sists of 6 x 6 (36) possible locations. At each timestep, the
agent is able to take 1 of 3 possible actions (move forward,
turn left, turn right). At the beginning of each learning trial,
the agent was initialised in the top left-hand corner (Figure 1,
red triangle) and was tasked with reaching the bottom right-
hand corner (Figure 1, green square).

Actor-Critic Network

The AC Network was implemented in Python using the NEF
(Eliasmith & Anderson, 2003) (see Figure 2 for the network
schematic). Input to the network is the agent’s current state,
and the most recent action and reward. The state is a 3-
dimensional vector containing the agent’s location in the grid
world (in the form of (x,y) coordinates) and the direction it’s
facing (0 = pointing right, 1 = down, 2 = left, 3 = up). This
state information is transformed into the chosen representa-
tion (one hot, random SSPs, or grid cells) in the representa-
tion node. The representation is then passed to a hidden layer
consisting of rate neurons utilizing a rectified linear function.
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Figure 2: Schematic of Actor-Critic Network.

The neuron activities along with the action and reward are
then used in a rule node where the TD update is performed.
The TD update trains the network’s weights to approximate
the optimal policy for completing the task with maximum re-
ward. The output from the network is the updated state value,
and a vector containing the preferences for each action, which
is used to decide which action to take in the next timestep.

Representations

One Hot: The one-hot method represents states by storing
an array containing one value for each possible state. States
are represented by setting all of the values in the array to 0
except for one which is set to 1. The position of this 1 value
in the array corresponds with the state being represented.
When implemented without the use of neurons, this method
of representation is equivalent to a look-up table. As such,
this method was used in two of the representation conditions:
one hot and baseline. In the baseline condition, the one-hot
method was implemented and the network did not contain
any neurons. In the one-hot condition, however, the one-hot
representation was passed to the hidden neuron layer before
being used in the TD update. The baseline condition was the
only condition that did not utilize the hidden neuron layer.

Spatial Semantic Pointers: Two different styles of neu-
rally plausible vector-based representations were imple-
mented. The first of these is randomly chosen SSPs (Komer
et al., 2019). The SSP method extends the idea of vector
symbolic architectures (VSAs) (Gayler, 2004) to continuous
spaces. Say we want to represent an ordered list, e.g. [A, B,
C]. With VSAs, we can do this by binding the list items (A, B
and C) to d-dimensional vectors for each position in the list
(e.g. POS1, POS3, POS3). Thus the list is represented as:

A®POS| +B®POS, +C®POS3,

where ® is the binding operator. Rather than generating
unique random vectors for each position in the list, we can
generate them in a more principled way. If we create a vector
for the first position (POS), then we can generate a vector for
the second position by binding the POS vector to itself. Thus
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for each integer index n of a structure, the positional vector
can be generated by binding the first positional vector to itself
n times (POS™):

A®POS+B®POS> +C®POS>.

Generalizing this method to representing continuous vari-
ables involves the use of fractional binding — rather than
raising the position vector POS only to integer values (e.g.
POS?), it is possible to raise it to some fractional power (e.g.
POS'?). The mathematical meaning of this operation is de-
pendent on the particular choice of the ® operator in the VSA.
One common choice is circular convolution. Since circu-
lar convolution can be implemented as multiplication in the
Fourier domain, the corresponding fractional number of bind-
ing operations can be expressed as:

POS" = F ' {F{POS}"}, neR.

Thus performing this fractional binding involves performing
the Fourier transform ¥, raising each Fourier coefficient to
the fractional power n, and then doing the inverse Fourier
transform F ~!. The result is our SSP.

In our VSA system, F{POS} is a unit-length complex
number, so raising it to the exponent n simply multiplies
its phase by n. In this way, an SSP encodes the value n
in the phases of its Fourier coefficients. This phase encod-
ing is similar in nature to how we represent time on an ana-
log clock. The hour-, minute-, and second-hands of a clock
change phase (rotate) as time progresses. Hence, we can tell
what time it is by looking at the phase of the 3 hands on the
clock. Importantly, the 3 hands oscillate at very different fre-
quencies, allowing us to determine the time to the precision
of 1 second, but over a 12-hour period.

Now that we can represent continuous variables, we can
encode multi-dimensional state information into such vectors.
For example, in the MiniGrid task, the state at any given time
is made up of the agent’s (x,y) coordinate location on the
grid, and the direction in which it’s facing (z). Encoding this
as a single SSP, S, can be done using:

S=F NFX)FX)FE2))

where, for each value in the state, we choose a high-
dimensional unitary vector (X, Y, or Z). We then com-
pute its Fourier transform, ¥ (X), raise that to an expo-
nent, ¥ (X)*, and multiply it by the other transformed val-
ues, (F(X)* x F(Y)¥ x F(Z)*). Finally, we take the inverse
Fourier transform in order to get our final SSP for that state.

This method of encoding the state was used for the ran-
dom SSP condition, with the additional note that the encod-
ing weights (Wencoders, Figure 2) were randomly generated,
resulting in neurons that were random pattern cells (see Fig-
ure 3A).

Grid Cells: In contrast with the random SSP method, by
carefully selecting X, Y, Z, and Wepcoders @S per Dumont &
Eliasmith (2020), it is possible to generate grid cells. While
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A

Figure 3: Receptive fields of neurons with random encoders
(A) and of grid cells (B) used to represent SSPs.

Table 1: Table showing which parameters were tested, the
ranges of values tested, and which network configurations in-
volved these parameters.

Parameter Values Tested Configurations
Alpha range 0 - 1 All

Beta range 0 - 1 All
Gamma range 0 - 1 All
Lambda range 0 - 1 All with TD(A)
Neurons range 100 - 5000  All with neurons
Sparsity range 0 - 1 All with neurons
Dimensions 64, 128, 256, 532 SSP rep

the mathematical details of this derivation are outside the
scope of this paper, the general principle is to choose vec-
tors such that the waves produced by the Fourier transform
cause triplets of wave functions to interfere with each other
to produce grid patterns (see Figure 3B). Furthermore, grids
of different sizes and orientations (as observed in the hip-
pocampus) are all produced out of the same vector, using the
same maths as in the previous section, purely by selecting our
base vectors and encoding connection weights. It should also
be noted that, while the construction of these vectors does
involve complex numbers, the resulting neural network is a
standard feed-forward single-hidden-layer network with real-
valued weights.

NNI Experiments

To perform hyper-parameter tuning, we used the Neural Net-
work Intelligence (NNI) toolkit (Microsoft, 2021). In total,
8 NNI experiments were performed. The parameters being
searched differed between network configurations. A list of
all parameters (along with the range of possible values) that
were searched is presented in Table 1. The NNI experiments
used an annealing algorithm for tuning, which starts by se-
lecting random values for the parameters, but over time se-
lects values that are closer to the best ones observed. The
optimization goal was to identify the set of parameters that
minimized the number of runs needed to reach a goal rolling-
mean reward of 0.95 over the last 100 learning trials. Each
NNI experiment was run for 12 hours.
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Figure 5: Scatter plots showing the number of trials to reach the goal rolling-mean reward for experiments using the best

performing parameter combinations.

Results
NNI Results

The first step for analysis was to calculate the number of trials
needed to reach the goal rolling mean of 0.95. For the pur-
poses of analysis, if an experiment failed to reach the goal, its
reported number of trials to reach goal was manually set to
2,000 (the max number of learning trials). This ensured that
these experiments could be included in the analysis.

In Figure 4 we present the optimization curves for all 8
NNI experiments. These plots provide a general idea of how
successful NNI was in finding good parameter sets for each
configuration. For the configurations using the TD(0) learn-
ing rule, it appears that the NNI experiment was able to iden-
tify good parameter sets (values which resulted in reaching
the goal in 200 learning trials or less) fairly quickly. Whilst
a similar pattern is evident for three of the configurations us-
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ing the TD(A) learning rules, the configuration using random
SSPs to represent the state continued to fail to reach the goal
throughout the experiment. In the initial study (Bartlett et al.,
in press), the mean number of trials needed to reach the goal
was generally greater for this configuration compared to the
others. The current findings suggest that this higher mean
may have been the result of a higher number of failed runs —
the previous study used the same approach of including failed
runs in the analysis by setting the number of trials needed to
reach the goal to the maximum number of trials (10,000).

The next step was to look more closely at the ‘best’ per-
forming parameter sets. We identified the top 2% of experi-
ments that achieved the goal in the fewest learning trials for
each configuration. Table 2 presents the minimum and maxi-
mum number of trials needed to reach the goal for the top 2%
of experiments using each configuration. Whilst the number
of trials needed to reach the goal are (mostly) smaller here
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Table 2: Table showing the number of experiments in the top 2% and the minimum and maximum (min, max) number of trials
needed for experiments in the top 2% to reach the goal rolling-mean reward.

‘ TD(0) Baseline TD(0) One Hot TD(0) Random SSP  TD(0) Grid Cells
N Experiments in top 2% 27 22 31 17
N Trials (min, max) 149, 150 127, 136 108, 116 105, 108

‘ TD(A) Baseline TD(A) One Hot TD(A) Random SSP  TD(A) Grid Cells
N Experiments in top 2% 30 21 6 19
N Trials (min, max) 134 99, 100 102, 109 99, 103

than the averages found in (Bartlett et al., in press), it is worth
noting that the use of grid cells and random SSPs still result
in faster learning than the baseline condition (and the one-hot
condition where TD(0) is used).

We then examined the stability of these ‘best’ parameter
values by identifying all of the experiments for which all of
the parameter values fell within the range of those identified
as the top 2%. Figure 5 shows the number of trials it took
for each of these experiments to achieve the goal. From these
figures we can identify that where TD(0) was used, all four
configurations demonstrated good stability of the identified
parameter combinations. In contrast, when using TD(A), the
configuration using random SSP representation demonstrated
markedly worse stability than any of the other configurations.
Apart from this, the results from these experiments seem to
support the argument that, where the TD(0) rule is used, the
use of grid cells for representing the state in a spatial navi-
gation RL task results in better performance than other meth-
ods. On the other hand, where the TD(A) rule is implemented,
all three networks using neurons in the hidden layer outper-
formed the baseline method, achieving the goal in close to
100 trials (compared to 134 trials for baseline, Table 2). This
demonstrates that tailored methods for representing the state
do at least as well as other methods.

TD()L) SSP Results Exploration

Considering the instability of the TD(A) with SSP represen-
tation configuration, we felt it necessary to further explore
this configuration in an attempt to identify the cause of the
instability. In Figure 6, we can see all of the combinations of
hyper-parameter values tested in the NNI experiment. Whilst
a wide range of values was explored for most of the parame-
ters, it seems that there was somewhat less exploration of the
number of neurons in the hidden layer, and the number of di-
mensions used in the SSP representation. That is, in Figure
6, many of the lines seem to converge to the same few points
on the ‘Neurons’ and ‘Dimensions’ axes (indicating that most
of the NNI experiments used these few values), whilst tend-
ing to be more spread out along the other axes. Specifically,
the NNI exploration seems to have mainly tested 64 and 256
dimensions, and 4117 and 4480 neurons. One potential rea-
son why the NNI experiments did not explore these variables
as much is because there was little difference in performance
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when exploring the values available for these two parameters,
and so the NNI stopped varying them. If this is the case, then
we may find better performance when setting the number of
neurons and dimensions to values outside the ranges used.
We therefore decided to force exploration of larger values for
these parameters by running experiments where only the di-
mensions or number of neurons were manipulated.

We examined the effect of adding dimensions by running
the same random SSP network using either 512 or 1024 di-
mensions. For the rest of the parameters, we chose a set of
values from the top 2%. Each value for the dimensions pa-
rameter was tested 20 times, with a different seed each time.
The results were compared with those obtained when the ran-
dom SSP representation used 256 dimensions. Figure 7 illus-
trates that whilst the mean number of trials needed to reach
the goal did decrease with increased dimensionality, the vari-
ability did not change, suggesting that increasing dimension-
ality did not effect the variability in performance.

We then examine the effect of larger numbers of neurons
in the hidden layer. Using the same procedure as above, we
compared performance when using the original 4,117 neu-
rons to networks whose hidden layer contained 5,000, 6,000,
7,000, 8,000, 9,000 and 10,000 neurons. Figure 8 illustrates
that changing this variable did not improve the stability of the
network’s performance. Given this instability, it seems that
good performance while using random SSPs to represent the
state relies on the luck of the seed.

Discussion

This study explored the impact of using biologically inspired
state representations on the performance of a TD-based AC
network on a simple RL task. Two learning rules, TD(0)
and TD(A), were implemented, and performance on the Gym
MiniGrid task was compared when the state was represented
using a baseline tabular method without neurons, vs. one-hot,
random SSP, or grid-cell SSP methods with neurons. The
NNI toolkit was used to conduct a search of the parameter
space for each of the 8 configurations. The results of these
experiments were used to identify parameter sets that resulted
in the network achieving a rolling average reward of 0.95 over
the last 100 learning trials in the fewest number of trials.

We found that the best 2% of configurations solved the
MiniGrid task in under 200 trials for all learning rules and



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

Alpha
0.83571

Beta
0.84717

08
06
04

0.2

0.07823 0.09472 0.05885 0.03472

Neurons

N Trials
2000

Dimensions
532

Sparsity
0.83548

N Trials
2000

1500

1000

500

0.06342

Figure 6: A parallel coordinates plot showing all of the hyperparameter value combinations tested in the NNI experiment using
TD()A) and SSP representation. Each line on this plot corresponds to one NNI run, where the values for each parameter are
indicated by where that line crosses each vertical axis. The final axis (N Trials, far right) as well as the colour of the lines shows
the number of trials needed for that run to reach the goal rolling mean reward.
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Figure 7: Point plot showing the mean number of trials
needed to reach the goal rolling mean reward, and 95% confi-
dence intervals, for each experiment using different N dimen-
sions in the SSP representation.

representation methods (Table 2). Where TD(0) was used,
the minimum number of trials needed was 149 and 127 for the
baseline and one-hot configurations, compared with 108 and
105 for the random SSP and grid-cell configurations (respec-
tively). Similarly, with TD(A) the baseline method required a
minimum of 134 trials compared with 102 (random SSP) and
99 (grid cells).

In contrast, in Bartlett et al. (in press) we found that, fol-
lowing a manual search of the parameter space, grid cells
markedly out-performed all three of the other representation
methods regardless of learning rule. A manual search of the
parameter space was able to identify a set of parameters such
that, when using the TD(A) learning rule, the grid cell net-
work was able to achieve the goal rolling mean reward in an
average of 105.4 trials, and 122.2 trials when using TD(0)
(with the next fastest configurations achieving an average of
142.8 and 156.6 trials respectively). This is comparable to the
99-103 trials identified in the present study. However, fol-
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Figure 8: Point plot showing the mean number of trials
needed to reach the goal rolling mean reward, and 95% confi-
dence intervals, for each experiment using different numbers
of neurons in the hidden layer.

lowing the optimization carried out in the present study, we
found that the advantage of grid cells over the other represen-
tation methods was much smaller than previously indicated.
It is still worth noting, though, that whilst the baseline and
one hot approaches do perform well once optimized, it seems
that grid cells do not necessarily require optimization.

It should be noted that the Mini Grid task used in this study
is fairly simple, so whilst the current study does not necessar-
ily indicate a huge advantage of using grid cells over other
methods, previous findings that grid cells do result in faster
learning (Gustafson & Daw, 2011) suggests that when tested
on more complex tasks, performance with grid cells may de-
viate more from non-biologically inspired methods.

Online Resources

Experiment and analysis scripts can be found in the
github repository (https://github.com/maddybartlett/
Fast RL_with Bio_Based_Reps).
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Abstract

Model convergence is an alternative approach for evaluating
computational models of cognition. Convergence occurs when
multiple models provide similar explanations for a phenomenon.
In contrast to competitive comparisons which focus on model
differences, identifying areas of convergence can provide evi-
dence for overarching theoretical ideas. We proposed criteria
for convergence which require models to be high in predictive
and cognitive similarity. We then used a cross fitting method to
explore the extent to which models from distinct computational
frameworks—quantum cognition and the cognitive architecture
ACT-R—-converge on explanations of the interference effect.
Our analysis revealed the models to be moderately high in pre-
dictive similarity but mixed for cognitive similarity. Though
convergence was limited, the analysis suggests that interference
effects emerge from interactions between uncertainty and the
degree to which an individual relies on typical cases to make
decisions. This result demonstrates the utility of convergence
analysis as a method for integrating insights from multiple
models.

Keywords: ACT-R; Quantum cognition; Interference effects;
Model convergence

Introduction

Model comparison often proceeds as a zero-sum game in
which two or more models offering different explanations
make opposing predictions. The winner of such competitions
is assumed to offer a more convincing representation of the
underlying cognitive processes. Although competitive compar-
isons can be useful to varying degrees, one potential limitation
is that one may overlook areas of convergence by focusing
exclusively on differences between models. Two models may
point to similar conclusions for a particular empirical phe-
nomenon even though they may differ in other regards. One
important benefit of convergence is that confidence in an ex-
planation will increase when two models are in agreement.
As an example of convergence, two distinct computational
frameworks, one based on the Adaptive Control of Thought-
Rational (ACT-R) and the other based on the drift diffusion
model—provided similar explanations for the deleterious ef-
fect of sleep loss on performance. Namely, they both explain
a reduction in the signal-to-noise ratio and a reduction in re-
sponse inhibition (Walsh et al., 2017).

Convergence offers an alternative approach for evaluating
what models reveal about human cognition (Gunzelmann,
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2019). The present study extends the existing work by elaborat-
ing upon the definition of convergence and its implications for
theoretical correspondence. We then conduct an exploratory
evaluation of the extent to which two distinct models of inter-
ference effects—an existing quantum cognition model and a
model developed in ACT-R—converge on conclusions consis-
tent with a single theoretical perspective.

Model Convergence

As shown in Figure 1, models can be compared along two
orthogonal dimensions: predictive similarity and cognitive
similarity. Predictive similarity is the degree to which the pre-
dictions of two models follow the same pattern. At minimum,
we require the predictions to follow the same qualitative pat-
tern, i.e., both models predict an effect in the same direction.
Cognitive similarity is defined as the degree to which two
models posit similar mental representations (i.e., the content
and organization of information about the external environ-
ment) and/or cognitive processes (i.e., how information is
transformed, manipulated, and combined) that are relevant for
a particular empirical phenomenon. Although this space is
continuous, it can be helpful to refer to prototypical examples
or describe the space more coarsely as quadrants. Conver-
gence occurs when two or more models are highly similar
along both dimensions.

high 5 | 5
° o

2z :
S8 fo____ e e
SE i
e Ae : Ce

low ,

low high

cognitive similarity

Figure 1: Four points in the space spanned by predictive simi-
larity and cognitive similarity. Point A represents competitive
comparisons and Point D represents convergence.
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The left half of Figure 1 reflects so-called “zones of con-
tention” where competing models propose different mental
representations and/or cognitive processes to explain an em-
pirical phenomenon (McClelland, 2009). At Point A in the
bottom-left quadrant, critical tests can distinguish between
competing models on the basis of their opposing predictions.
By contrast, for Point B in which predictions are similar, dif-
ferent mental representations and cognitive processes cannot
be distinguished on the basis of their predictions. Indeed,
such ambiguity often leads to the development of the critical
tests conducted in bottom-left quadrant, a cycle that can re-
peat itself many times (Gunzelmann, 2019). The right half
represents cases in which models are cognitively similar and
thus propose similar mental representations and/or cognitive
processes. Point C in the bottom-right quadrant represents
an unusual situation in which two models high in cognitive
similarity yield differing predictions. In this case, the mod-
els provide contradictory evidence for a common explanation.
Point D in the top-right quadrant represents the case where
models converge on a common explanation: both models rely
on similar mental representations and/or cognitive processes
and make similar predictions. When convergence occurs, we
find more evidence for an explanation than we would other-
wise. We believe viewing model comparisons through the
lens of convergence adds clarity to theoretical implications
and may provide additional evidence for an overarching the-
ory. By contrast, the competitive approach seeks to refute
one of the models. Although both approaches have different
goals, taken together, they offer complementary methods for
evaluating theoretical support (Gunzelmann, 2019).

Current Application

We explore whether quantum cognition and ACT-R provide
converging explanations of the interference effect. Interfer-
ence effects emerge when uncertainty about an event changes
the marginal probability of a subsequent decision, resulting
in a violation of the law of total probability (Wang & Buse-
meyer, 2016). The models we investigated derive from highly
disparate computational frameworks with strong empirical
support. The belief-action entanglement model is based on
the mathematical formalism of quantum probability which
has been used to explain several empirical phenomena where
models based on classical probability generally fail (Wang &
Busemeyer, 2016). By contrast, ACT-R is a cognitive archi-
tecture in which cognition emerges from interactions between
specialized information processing modules for declarative
and procedural memory, perception, and action among oth-
ers (Anderson et al., 2004). Given that both frameworks have
withstood many rounds of empirical testing, one might expect
points of convergence to emerge.

Categorization-Decision Paradigm

One popular paradigm for studying interference effects emerg-
ing from the interactions of categorization and decision mak-
ing is the categorization-decision paradigm (Wang & Buse-
meyer, 2016). On each trial, a face from a “good” category
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or a “bad” category is presented, and participants must decide
whether to attack or withdraw. Each face consisted of either a
g-type or b-type feature, which were typically associated with
the good category or bad category, respectively. Further, par-
ticipants were typically rewarded for attacking a bad category
and withdrawing from a good category. However, these asso-
ciations were probabilistic, and atypical associations occurred
in some trials.

Uncertainty about the category was manipulated across
three conditions to elicit an interference effect. In the decision-
only (d) condition, no category information was provided
prior to the decision to act, and categorization was presumed to
occur implicitly (Wang & Busemeyer, 2016). In the categorize-
then-decide (cd) condition, participants were asked to self-
categorize the feature then decide upon an action. In the third
explicit-categorization (xd) condition, the true category was
provided prior to the action decision.

Belief-Action Entanglement Model

The belief-action entanglement (BAE) model is a quantum
cognition model of interference effects in categorization and
decision making. A full mathematical description of the model
can be found in Wang & Busemeyer (2016). In the BAE model,
states evolve within a finite Hilbert space H (N-dimensional
universal vector space) across a field of complex numbers.
The potential of a state is given by the unit-length vector y.
A defining feature of quantum systems, to include cognitive
systems, is that a measurement changes the state. Conse-
quently, transitions occur when  is measured, e.g., a feature
is categorized or an action is selected.

The BAE represents category-action events as basis states
where GW symbolizes the combined event of categorizing a
feature as good then deciding to withdraw. The initial state
Y is uncertain and superposed over the four possible basis

states, W, = [GW7GA,BW7BA]T. Basis states are assigned
amplitudes such that the square magnitude gives its prob-
ability: |Wgw|?> = Pr(GW). The parameter j governs the
probability a b-type or g-type feature will be judged as be-
longing to either category, e.g., for a b-type feature, Yy, =
Y, = % [\/ I—j,v 1_j7\/j’\/7]T'

Prior to action evaluation, the state remains in the super-
posed Y in the d condition. In cd and xd, the state transitions
to either being in the good or bad category. After transition-
ing to the bad category, as an example, the state is updated
oy, =y, = % [0,0,1, I}T, where the latter values represent
BW and BA and the state is only superposed over the actions.

During action evaluation, the state transitions according to
the reward rate and utility parameters which influence the prob-
ability of a action given a feature and category. For example,
Up s the utility for attacking a b-type feature categorized as
bad. The transition to the final action state is computed using
a separate unitary matrix for each feature type. When the cate-
gory is ambiguous as in cd and d, the transition includes the
entanglement parameter Y which amplifies amplitudes for typ-
ical category-action events, e.g., GW and BA, and attenuates
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amplitudes for atypical events, e.g. GA and BW. Alternately,
7 has no effect in xd because the true category is known. Con-
sequently, the BAE model predicts that interference effects
emerge from differences in the utilities for each feature type
and the influence of y on uncertain states.

ACT-R Model

We developed a memory-based ACT-R model of the inter-
ference effect. and focus our description on the declarative
memory system.

Declarative Memory

In ACT-R, the basic unit of declarative knowledge is a set of
slot-value pairs called a chunk: €, = {(s;,vi) };c; , where s;
and v; are the slot and value of pair 7, and 7, is the index set for
slot-value pairs of chunk m. We will use the set O, = {5 }ier,
to denote a set of slots (e.g., domain) in ¢,,. The mapping from
slots to values is defined as ¢, (s) = v, where v is null if the
chunk does not include s.

The set of slots for each chunk is defined as Q =
{feature, category,action}, where the feature can be b-type
or g-type, the category can be good or bad and the ac-
tion can be attack or withdraw. Declarative memory M
consists of 23 = 8 chunks formed by permuting the possi-
ble values for feature, category and action. For example,
copa = {(feature,g-type), (category,bad), (action, attack)} is
a chunk for attacking a g-type face in the bad category. We
will use a three letter abbreviation, such as gba, to denote the
feature, category, and action values of a chunk.

Memory Activation

Each chunk is associated with an activation value represent-
ing its ability to be retrieved. As activation increases, the
probability of retrieval increases. We omit the base-level learn-
ing mechanism because learning was not observed in Wang &
Busemeyer (2016). Activation is defined as a,,, = By, + P +€m
where [ is the base-level constant, p is the partial matching
term, and € ~ logistic(0, s) is logistically distributed noise with
scalar parameter s. The partial matching mechanism allows
chunks that do not match the retrieval request r to be retrieved
as a decreasing function of mismatch. The retrieval request is
treated as a chunk with slot-value pairs. We use a binary mis-
match penalty function: p,, = —8Y ,c0, I(cm(q),7(q)), where
d is the mismatch penalty parameter, Q, is the set of slots
in the request, and / is an indicator function which returns 1
when both inputs are not equal and returns 0 otherwise.

Retrieval Process

Upon stimulus presentation, a retrieval request r based on all
available information is submitted to declarative memory. For
example, in the d condition, only the feature is available, but in
the xd condition both the feature and the category are available.
The chunk with the highest activation value above the retrieval
threshold 7 is retrieved and determines the eventual response.
To simplify the model, we set the retrieval threshold to —10
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under the assumption that chunks are sufficiently active to be
retrieved.

Model Predictions

In the predictions for each condition below, we use A to denote
arandom variable for the action, F to denote a random variable
to denote the feature, and C as a random variable to denote the
category.

d condition Participants decided to attack or withdraw
from a face with feature f. The retrieval request is r =
{(feature, f)}. We will define R, as the set of chunks that
map to a decision to attack Ry = {¢,, € M : ¢, (feature) =
r(feature), ¢,y (action) = attack}. In other words, R, is the set
of chunks that match feature f and have a value “attack” for
the action slot. The approximate probability of attacking is
computed using the soft max function (Weaver, 2008):
YkleyeRy eH/©

Pr(A:a|F:f): e,u]-/c

(D

Zj‘CjEM

where 6 = s1/2 and the expected activation is E[a,,] = .

xd condition Participants were told the true category v for a
face with feature f then decided to attack or withdraw, leading
to the retrieval request r = {(feature, f), (category,v)}. The
set of chunks that map to the decision to attack is defined
as: Ryg = {cm € M : ciy(feature) = r(feature), ¢, (category) =
r(category),cp (action) = attack}. The probability of attack-
ing a face with feature f in category v is given by:

(&
_ Zk‘ckERxd e#k/

PrfA=a|F=f,C=v)= .
ZlejEM e‘uI/G

2

cd condition Participants categorized a face with feature
f as good or bad followed by a separate response to attack
or withdraw. The retrieval request for the categorization is
r. = {(feature, f)}. The set of chunks that map to a cate-
gory response v is defined as Reqc = {cm € M : ¢y (feature) =
rc(feature), ¢,y (category) = v}. The probability of categoriz-
ing face with feature f as v is given by:

°
Lk, eReqc et/

Pr(C=v|F = f) = SHochac ™
Z].'chMelJ//G

3)

The judged category v is incorporated into the retrieval request
for the subsequent decision: ry = {(feature, f), (category,v)}.
The set of chunks that map to the decision to attack is the
same as in the cd condition: Ryg = Rcq4, which implies that
the probability of attacking a face with feature f categorized
as v is equal to equation 2 from the xd condition.

Cross Fitting

To measure predictive and cognitive similarity, we used a
cross fitting method inspired by Donkin et al. (2011). In
our study, predictive similarity is measured by comparing the
qualitative predictions of the two models, whereas cognitive
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similarity is measured by assessing the mapping of parameters
from one model to another. Our cross fitting method entails
two steps. First, we generated predictions from the BAE
model by varying one parameter at a time while holding the
others constant at their best fitting values reported in Wang
& Busemeyer (2016). Second, we fit the ACT-R model to
the predictions of the BAE by minimizing Kullback-Leibler
divergence (KLD; Kullback & Leibler, 1951). KLD is the
amount of information lost by using one distribution in place
of another, i.e., how much information is lost when using
the best fit ACT-R model to represent the BAE mode. One
advantage of comparing two probability distributions using
KLD instead of fitting a model to a finite sample of simulated
data is that it eliminates the role of noise in the mapping.

We selected three parameters on the basis of their qualita-
tively distinct roles in the model: the entanglement parameter,
v, the category judgement parameter, j, and a utility parameter,
up.p- Each parameter was varied across 20 equally spaced val-
ues: Y€ [0,2], j € [.01,.99], and up, € [—1,1]. We set s = .2
and base level constants Bypy = 0.0 and Pggw = 0.2 to ensure
identifiability of the model parameters. We used differential
evolution to minimize KLD.

Convergence Predictions

Psychologically, interference effects can result from increased
on reliance typical associations in the absence of certain in-
formation (Fiske & Taylor, 1991). For example, Bpba and iy, 5
represent the influence of typical associations between a face
with a b-type feature in the bad category and the decision to
attack. The strength of influence varies with certainty about
the category. If convergence is present, the BAE and ACT-R
accounts of these processes should be relatable.

First, we expect typical associations to strengthen the prob-
ability to attack, Pr(A), for b-type features in both models,
irrespective of category certainty. In the BAE, this should be
most evident as up, , increases. In ACT-R, we expect to observe
a comparable increase Pppy With a commensurate decrease in
Bs for atypical associations according to equations 1 and 2.
Second, we expected category uncertainty in the d condition to
moderate the Pr(A). In the BAE, changes in j should vary the
influence of typical associations. Because the retrieval request
only contains the feature, a comparable process in ACT-R
should systematically influence Bs for typical categories and
actions according to equation 1.

Third, we expect Y and § parameters to modulate the influ-
ence of utility and [ parameters, respectively. In particular,
we expect Y to amplify the effect of typical associations for
the Pr(A), but only with category uncertainty in cd and d.
In ACT-R, the analogous effect should occur at higher val-
ues of & which increase the probability of selecting an exact
match.Consequently, we expect the influence of Bpp, to be
amplified while attenuating the influence of atypical Bs.

Results

We assess predictive and cognitive similarity between the BAE
and ACT-R for each of the three BAE parameters to determine
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Figure 2: Best fitting values for the base level constant ()
parameters and the mismatch penalty parameter (8) for ACT-R
as a function of y from the BAE model.
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Figure 3: Response probabilities for the BAE (red) and ACT-R
(black) models as a function of y paneled by response category.
Subplot titles give condition, face type, category.
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whether the models converge on similar explanations of the
interference effect.

The entanglement parameter 7. Predictive similarity: for
both models, the response probabilities follow qualitatively
similar patterns in cd and d, a distinction more pronounced in
cd than d (see Figure 3). However, Pr(A) patterns are qualita-
tively dissimilar in xd. Specifically, the BAE model is invariant
to v, as intended, whereas as ACT-R simply reproduces pattern
of probabilities in cd. This is not surprising as equation 2
computes the Pr(A) in both xd and cd. The results indicate
predicative similarity is moderately high for ambiguous cate-
gory knowledge but low for unambiguous categorization.

Cognitive similarity: for simplicity, we focus on mappings
where 7y is less than 1 (see Figure 2). Though the pattern
is not strictly linear, decreases in y and increases in & favor
typical associations, as predicted. In ACT-R specifically, the
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Figure 4: Best fitting values for the base level constant ([3)
parameters and the mismatch penalty parameter (8) for ACT-R
as a function of j from the BAE model.
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Figure 5: Response probabilities for the BAE (red) and ACT-R

(black) models as a function of j paneled by response category.

Subplot titles give condition, face type, category.
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process entails expected interactions with By, as well as the
atypical Bgphw. As a result, we conclude the models exhibit
high cognitive similarity for modulating bias.

The category judgement parameter j. Predictive simi-
larity: The BAE and ACT-R produced identical distributions
for Pr(A) in d (see Figure 5). By contrast, Pr(A) in xd and
cd remained invariant in both models, indicating they were
constrained to the d condition, as expected. All told, these
patterns indicate high predictive similarity.

Cognitive similarity: The relatively linear decreases in &
and atypical B values with increases in the j parameter reveal
an unexpected mapping between the two models (see Fig-
ure 4). In the BAE model, the Pr(A) derives from an uncertain
superposition state over possible outcomes and is systemati-
cally modulated by j. In contrast, the ACT-R model is less
systematic and it is not clear the mental states represented by
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parameter interactions. Specifically, the Pr(A) increases at
high values of 8, which approximates increasing bias in the
decision, and also at low values of 9§, ostensibly represent-
ing indecision between alternatives. Because ACT-R’s varied
account cannot easily be reconciled with the BAE account,
we conclude the models are low in cognitive similarity when
category is uncertain and not made explicit.

The utility parameter ;. Predictive similarity: Visual
inspection of Figure 7 indicates that predictive similarity is
high when u;,, is varied. The predictions exhibit some dis-
crepancy for b-type faces in the bad category in the xd and
cd conditions. Nonetheless, the predictions are qualitatively
similar throughout.

Cognitive similarity: The varied behavior of ACT-R param-
eters across the range of uj,;, was surprising (see Figure 6).
In the BAE, u;, , exerts a relatively linear effect on the Pr(A),
as expected. In ACT-R, the Pr(A) varies with parameter in-
teractions when i, , is above versus below 0. Specifically,
when i, ;, > 0, Bpba amplifies the Pr(A) when an exact match
is more probable (e.g., at higher § values), in line with our
expectations. Alternatively when y;,;, < 0, the atypical Bgpy
increasingly attenuates the Pr(A) when a mismatch becomes
more likely (e.g., at lower § values) which was neither ex-
pected nor a predictable function of 8. Because only a portion
of ACT-R interactions are analogous u, 5’s function, cognitive
similarity between the models was deemed moderate, at best,
for the influence of typical associations.

Figure 6: Best fitting values for the base level constant ()
parameters and the mismatch penalty parameter (8) for ACT-R
as a function of uj, ;, from the BAE model.

-1.0 -0.5 0.0 0.5 1.0
pubb
Discussion

The goal of the present study was two-fold. First, we elab-
orated upon the definition of model convergence. Second,
we explored the extent the BAE, a model based in quantum
cognition, and a model based in ACT-R provide converging
explanations of the interference effect. Our criteria for conver-
gence required models be both high in predictive and cognitive
similarity. For interference effects, we expected similarities to
emerge from interactions between category certainty and the
influence of typical associations on decisions.

Both models exhibited moderately high predictive similarity.
Predictions were more similar when the category was uncer-
tain (cd and d) but diverged when the category was certain
(xd). In ACT-R, the divergence can be attributed to the partial
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Figure 7: Response probabilities for the BAE (red) and ACT-
R (black) models as a function of u, , paneled by response
category. Subplot titles give condition, face type, category.
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matching mechanism which is constrained to implementing
penalties for mismatches in slot-value pairs. The architecture
does not permit penalizing mismatches at the condition level.
Hence, when the category was included in the retrieval request,
the model was unable to differentiate between an uncertain
category in cd and a true one in xd. The BAE can account for
unambiguous category knowledge because the entanglement
parameter Y was not applied to state transitions in xd (Wang &
Busemeyer, 2016).

Cognitive similarity between the two models was mixed.
The BAE’s ¥ parameter and ACT-R’s mismatch penalty & mod-
ulated the influence of typical and atypical associations in
comparable ways. Overall, we found the expected relationship
between u;, 5 and Bphy. However, for y, 5, and j, ACT-R pa-
rameter mappings were by determined by the ratio of Bs (see
equations 1, 2, 3) and varying values of 8 which at times ap-
peared unsystematic and difficult to predict. The variability is
surprising given that both the BAE and ACT-R models produce
interference effects and can account for violations of total prob-
ability. One explanation for the unexpected mappings may be
due to the idiosyncrasy of a particular implementation rather
than the function of partial matching. If so, then cognitive
similarity may be higher than assessed.

Indeed, while useful, our cross fitting analysis may have
obscured areas of cognitive similarity. First, our mappings
were asymmetrical such that ACT-R parameters were cross
fitted as a function of the BAE parameters but not the other way
around. However, ACT-R’s fluctuating parameter interactions
pose a challenge for symmetrical mappings, and it is unclear
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whether mapping to a single parameter would be sufficient to
evaluate convergence. Second, our mappings centered on best
fitting values, ergo limiting the scope of our analysis; the full
space of potential convergence was not explored. Evidence
for similarity would be greater if the relationships hold across
a larger sub-space of parameters. Even so, our approach of
evaluating parameters near the best fitting is a reasonable
starting point.

With respect to supporting a single theoretical perspective,
our analysis was informative, even as convergence was limited.
Had we conducted a competitive comparison, the theoretical
contribution of the losing model might have been eclipsed.
As it stands, not only have we accumulated evidence for the
psychological processes underlying interference effects, but
our analysis identified areas where future research can further
elucidate how and when the human mind is influenced by the
strength of beliefs in uncertain situations.
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Abstract

Many decisions we face in life are sequential, where alter-
natives appear over time. We often must decide whether to
take the opportunity and stop searching or to continue evalu-
ating potentially better future alternatives. Humans are notori-
ously poor at stopping optimally in sequential decision-making
tasks. These sequential decisions are difficult because they in-
volve the consideration of how past, present, and future de-
cisions affect the outcome. Recent research suggests that the
wisdom of the crowd (WoC) — that is, aggregated decisions
of many people that outperform most individuals — can be ap-
plied to sequential decision tasks and potentially help improve
stopping decisions. Current models rely on a process of fitting
human data, making it difficult to understand how those indi-
viduals would behave in new problems. Furthermore, these
models do not account for the learning process that humans
experience while making these decisions. In this work, we
demonstrate how simulated agents using a cognitive model de-
rived from Instance-Based Learning Theory (IBLT) can pro-
duce WoC that is similar to WoC from human participants in
two sequential decision tasks. We demonstrate that the WoC
performance from simulated groups of agents is better than
the performance of most agents and that the Instance-Based
Learning (IBL) crowd behavior is similar to the human crowd
behavior. Thus, cognitive models that account for learning and
experience can be used to inductively predict the behavior of
human crowds in sequential decision tasks.

Keywords: wisdom of crowds; sequential decision making;
cognitive modeling; instance-based learning

Introduction

Sequential decision making is ubiquitous in everyday life. As
we navigate the world and make decisions, we often do not
face all possible alternatives at once. Instead, alternatives
emerge over time, and to maximize benefits, a choice must
involve the selection of an alternative at the right time, before
the opportunity disappears. For example, to select a rental
apartment in a dynamic market, one must decide when to stop
visiting new possibilities and make an offer before the current
option becomes unavailable.

The literature on sequential decisions has underscored that
people are often suboptimal in making stopping decisions in
sequential tasks, given the tradeoffs of risk and uncertainty
(Lejuez et al., 2002; Lee, 2006; Guan, Stokes, Vandeker-
ckhove, & Lee, 2020; Guan, 2019; Bugbee & Gonzalez,
2022b). Recently, the possibility of using the Wisdom of
Crowds (WoC) has been suggested as a way to address these
difficulties in sequential decision problems (Thomas, Coon,
Westfall, & Lee, 2021). The WoC (Surowiecki, 2005) sug-
gests that the aggregation of individual estimates or decisions
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can outperform most of the individuals in the crowd, and a
significant amount of work has demonstrated that the aggre-
gation of collective wisdom can be beneficial in a large num-
ber of tasks. However, the benefits of WoC for sequential
decision tasks have only recently been suggested (Thomas
et al.,, 2021). The idea is to aggregate the answers from a
group of individuals in each choice of a sequence to produce
a crowd answer (e.g., whether to stop exploring or not), and
such aggregate would produce an answer closer to the optimal
stopping point compared to individual decisions.

In their work, Thomas et al. (2021) aggregate individual
predictions to retrieve WoC predictions. These WoC predic-
tions, along with the individual responses, are then compare
to the predictions of cognitive models at the individual and
crowd level. They used statistical models of individuals to
provide model-based predictions, showing that the aggrega-
tion of these predictions can result in accurate behavior in
not only problems that individuals completed, but also new
problems that participants did not previously experience. The
models that Thomas et al. (2021) present are descriptive sta-
tistical models, where the parameters of the models are fit to
the data of individuals, and these parameter values are then
used to generalize to new problems within the same class of
sequential decision-making problems. These are not process
models that represent the individual learning through a se-
quence; and thus, they would fail to account for behavior in
situations in which people learn from past choices.

In this research, we build on the work of Thomas et al.
(2021) to test the benefits of WoC using cognitive models.
We rely on two known sequential decision tasks and their pre-
viously collected data sets (Guan, 2019; Guan et al., 2020).
Further, we utilize two existing cognitive models of sequen-
tial decisions in these tasks (Bugbee & Gonzalez, 2022a,
2022b). In contrast to the work of Thomas et al. (2021), these
cognitive models are generative process models that learn
through experience to produce predictions of human stop-
ping decisions in the absence of human data. These models
act based on a theory of decisions from experience, Instance-
Based Learning (IBL) Theory (Gonzalez, Lerch, & Lebiere,
2003), and are able to replicate human sequential decisions
closely. The question in this research is whether the WoC
predictions in groups of agents generated with IBL models
result in similar values as the groups of human participants in
the same sequential decision making tasks. The replication
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of the human crowd behavior in addition to the individual hu-
man behavior has significant benefits for applying the WoC
to sequences of decisions in new situations for which human
data might not exist.

Sequential Decision Tasks and Data Sets

For this work, we used experimental data previously collected
by Guan (2019) and Guan et al. (2020) in two sequential de-
cision tasks: the Balloon Analog Risk Task (BART) and the
Optimal Stopping Task.

Balloon Analog Risk Task (BART)

BART is a sequential decision making task in which a deci-
sion maker inflates a balloon. The level of inflation corre-
sponds to the reward that the decision maker can receive. At
each time point, the decision maker decides whether to pump
the balloon and increase its value or bank the current mone-
tary amount. However, with each pump of the balloon, there
is a probability that the balloon bursts, causing the decision
maker to receive a reward of O for that problem. This leads
to the need to balance exploring through pumping with ex-
ploitation through banking, with the goal of maximizing total
reward. Each balloon has a predefined burst time generated
from the constant probability of bursting, although partici-
pants are not told these probabilities.

In the experiment from Guan et al. (2020), 56 participants
completed the BART in a within-subjects design. Participants
were presented balloons with a fixed probability of bursting
with each pump (either P(Burst) = 0.1 or P(Burst) = 0.2)".
Every participant completed 50 problems with each proba-
bility, and the order of the problems and conditions was ran-
domized between participants. Each problem started with a
balloon with a hypothetical value of $1. For each decision,
the participant had the option to pump the balloon (“Pump”)
and increase its monetary value by $1, or stop (“Bank”) and
collect the current monetary value. However, each pump ac-
tion risks bursting the balloon, which results in collecting $0
for that problem. The participant continued making Bank or
Pump decisions until either the balloon burst or the partic-
ipant chose the Bank action and collected the money. The
stated goal was to maximize the total reward on all problems.
Participants were compensated for their time but were not re-
warded based on their performance.

Optimal Stopping Task

In the Optimal Stopping Task, the same 56 participants from
Guan et al. (2020) were presented with sequences of cats.
They were instructed to choose the cat in the sequence with
the highest weight. Participants were presented with cats se-
quentially and were required to “Select” or “Pass’ each cat.
Once passed, the cat could not be returned to. The partici-
pants were instructed that the last cat in the sequence must be
chosen if none is chosen prior. If they chose the cat with the

IThis deviates from the typical BART design (e.g. Lejuez et al.
(2002)), in which the probability of the balloon bursting increases as
the number of pumps increases.
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Bank: $0.00

Bank: $25.00

5

$6.00

Figure 1: A screenshot of the BART experiment obtained
from Guan (2019).

maximum weight, they were correct, and otherwise they were
incorrect. Participants received feedback on the accuracy of
their choice, but not about unseen cats.

The task had a within-subjects design. Each participant
experienced four conditions, in which both the distribution of
weights and the length of the sequence were varied. Weights
ranged between 0 and 100 pounds, according to either a uni-
form (i.e., “neutral”) or beta(4,2) (i.e., “plentiful”, as weights
are skewed toward higher weights) distribution scaled to O to
100. The sequences consisted of 4 or 8 cats. Participants were
told the length of the sequence but not the distribution of cat
weights.

All participants completed a group of 40 problems within
each condition with a randomized problem order among the
participants. The order of conditions was also randomized
among participants.

Block: 1 of 4
Problem: 2 of 40

Correct: 0 of 1

e

&

Figure 2: A screenshot of the Optimal Stopping Task experi-
ment obtained from Guan (2019).

Instance-Based Learning Theory

We use cognitive models based on Instance-Based Learning
Theory (IBLT) recently implemented in Bugbee and Gonza-
lez (2022b) and Bugbee and Gonzalez (2022a). IBLT out-
lines a theory of decisions from experience, derived from
mechanisms proposed in the ACT-R cognitive architecture
(Anderson & Lebiere, 2014). The theory was developed to
explain human learning in dynamic environments (Gonzalez
et al., 2003). It provides an algorithm for learning from expe-
rience and making decisions, which can be used to implement
a computational model of these processes that simulates hu-
man behavior.

There are three primary components of the decision mak-
ing algorithm: recognition and retrieval of past instances, as
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a function of their similarity to a current decision; calculation
of the expected utility of decision alternatives, and a choice
rule that allows for generalization from past experience. Past
instances are stored in memory and are effectively memory
units consisting of situations s € S, decisions a € A, and the
realized utility x of taking action a after observing situation s.
An option is defined as k = (S,A): making a decision A in the
situation S.

At time ¢, there are ny, different generated instances
(k,xjx;) for i =1,...,n,, corresponding to selecting k and
achieving the outcome x;;,. Each instance i in memory has
an activation value, which represents how readily available
this information is in memory, and is determined by similar-
ity to past situations, recency, frequency, and noise (Anderson
& Lebiere, 2014). The activation is described by Equation 1,
for option j, when presented with option k (that is, the current
situation is described by k):

Aiji=In| £ (t—1)? | +ask j)+oln’= (1)
o =y 3

where .
S(k, j) =Y Sim;(f},£)) )
J

and o, d and ¢ are the mismatch penalty, decay, and noise
parameters, respectively. Furthermore, 7; C {0,...,t — 1} is
the set of previous timestamps in which the instance i was
observed and Sim; is a similarity function that calculates the
similarity of the jth attribute of an option k, f’ /k . The rightmost
term represents Gaussian noise to capture individual variation
in activation, and & is a random number drawn from a uniform
distribution U (0, 1) at each time step and for each instance
and option.

The probability of retrieving an instance i from memory is
a function of its activation A; ;. relative to the activation of
all instances:

exp(
njt
j=1
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3

P ST xS
where 7 is the temperature parameter. As T — 0, the selection
of actions is deterministic, and as T — oo, all actions become
equally likely.

The expected utility of option k is given by the blending
mechanism calculated as in Gonzalez and Dutt (2011):

“

The blending operation (Equation 4) is the sum of all past ex-
periences weighted by their probability of retrieval, for which
the option with the maximum blended value is selected greed-
ily. In particular, at the /-th step of an episode, the agent se-
lects the option (s;7,a;) with

o an
Vit = Y21 Pik,jiXiji-

&)

a; = argmaxV,
gaeA (sp,a)t
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When the agent receives delayed results, the agent up-
dates expected utilities using a credit assignment mecha-
nism (Nguyen, McDonald, & Gonzalez, 2021). Throughout
the present work, we use default parameter values for decay
d = 0.5 and noise ¢ = 0.25. The mismatch penalty o is set
for each task individually.

IBL Model of BART

We use a previously developed IBL model for the BART
(Bugbee & Gonzalez, 2022b). The instance structure in this
model is as follows: the situation has the feature of the num-
ber of pumps of the balloon prior to the present decision, the
decision is to pump the balloon or bank, and the utility de-
pends on the outcome of that decision. If the balloon bursts
from that decision, then the utility is 0, since the model should
learn that pumping at that number of pumps led to bursting
the balloon and receiving no money for that problem. If the
balloon does not burst from that decision, then the utility is
the value of the balloon or the number of pumps thus far plus
one for the initial value, since the model should learn that
pumping at that number of pumps did not burst the balloon.
The model uses partial matching, in particular linear similar-
ity, to compare the current instance to past ones, and a mis-
match penalty of o = 5.

IBL Model of Optimal Stopping Task

We similarly use an IBL model for the Optimal Stopping Task
proposed by Bugbee and Gonzalez (2022a). The instance
structure of this model is as follows: the situation has the fea-
ture of the value of the current alternative and the number of
alternatives remaining in the sequence, the decision is to se-
lect the alternative or pass, and the utility is 1 if the selected
alternative is the maximum and O otherwise. The model uses
a credit assignment mechanism such that the utility is prop-
agated back to the previous decisions in the sequence once a
select action is made and the outcome is observed. The model
uses partial matching, in particular linear similarity, to com-
pare the current instance to past instances, and a mismatch
penalty of o = 10.

Model Simulation Methods

We use cognitive models based on IBLT (Gonzalez et al.,
2003) and implemented using PyIBL, a Python implementa-
tion of IBLT (Morrison & Gonzalez, 2021). As mentioned,
these models were developed and reported in Bugbee and
Gonzalez (2022b) for the BART and Bugbee and Gonzalez
(2022a) for the Optimal Stopping Task.

For each human participant in the data set, we simulate
an IBL model agent experiencing the same stimuli, that is,
the exact problems and conditions in the same order as the
human. Therefore, we can map each IBL model agent to a
corresponding human participant in the original study. Im-
portantly, the models are not fit to the human data, so the
correspondence between models and humans is only a result
of the similarity of their experiences. As a result, we have
56 simulated IBL model agents making choices in each task,



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

BART Task .« Optimal
_ Human Reward Distribution Tromas ef al. Model Crowd
400 4 Human Crowd Behavior
N L4 —-— Participant Average
=t Participants
g 2.84
$°1 ‘= 254
e . T 1.86
§ ~ 1,60 1.60- A
= 2 e _
P(Burst) = 0.1 P(Burst) = 0.2

()

BART Task o Optimal
_ IBL Reward Distribution m  Thomas et al. Model Crowd
4.00 4 IBL Crowd Behavior

< - ° —— IBL Agent Average
B IBL Agents
[ 2.84
2 o
& " 228
g ~ 160 160 'F2
S | e

o T [

P(Burst) = 0.1 P(Burst) =0.2

(b

Figure 3: (a) Distribution of mean rewards for the human participants and (b) distribution of mean rewards for IBL model
agents in the BART task, compared to the Thomas et al. (2021) Model Crowd and the optimal decision process.
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Figure 4: (a) Individual behavior (left panel) and crowd behavior (right panel) for the human participants and (b) individual
and crowd behavior for IBL agents for a problem in the BART task in which the balloon bursts at pump 15. For the individual
behavior, lines indicate the number of pumps for each individual, and red dots indicate that the participant burst the balloon.
For the crowd behavior, the dashed line corresponds to half of the participants to visualize the majority decision. The human
crowd banks at pump 4 and the IBL model crowd banks at pump 3.

where each simulated agent maps directly to a particular hu-
man participant.

Wisdom of Crowds Aggregation

In alignment with Thomas et al. (2021) we use the behavior-
based majority decision to determine the WoC decision. That
is, for each decision, the behavior of the crowd is that of the
majority of participants.

In the BART, the behavior-based WoC crowd behavior
is governed by the majority decision to pump or bank on
each trial. Each individual, given that they have not already
banked, decides whether to pump the balloon or bank the
money. Once a participant decides to bank, presumably they
have decided to bank on all following decisions, so we impute
those after banking as bank decisions as well. This is a devi-
ation from Thomas et al. (2021), where they remove partici-
pants after they make a bank decision. The crowd follows the
majority until the majority either banks or the balloon bursts.

In the Optimal Stopping Task, the behavior-based WoC be-
havior depends on the majority decision at each alternative.
For a particular alternative, each individual decides to select
that alternative or pass and see the next one. The crowd will
select the alternative if that is the selection of the majority;
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otherwise, it will pass and continue until either the majority
selects a particular cat or the end of the sequence is reached
and the last cat must be chosen. This is directly in alignment
with Thomas et al. (2021).

Results

For the results, we will show the individual behavior for the
human participants and IBL agents alongside their respective
crowd behaviors corresponding to the majority decisions. For
the BART, the crowd decision is determined for each pump
or bank decision. For the Optimal Stopping Task, the crowd
decision is determined at each select or pass decision.

WoC in the BART Task

Figures 3a and 3b show the distribution of mean rewards, the
average reward, and the crowd behavior for the human partic-
ipants and IBL agents respectively. The figures also display
the optimal reward and the reward of the model crowd from
Thomas et al. (2021) for comparison.

The distribution of mean rewards is slightly lower for the
IBL model than for humans. This is explained by the need for
the IBL model to learn from experience how to gain points
without “reading instructions” while human participants read
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Figure 5: (a) Distribution of mean rewards for human participants and (b) distribution of mean rewards for IBL model agents
in the Optimal Stopping Task, compared to the Thomas et al. (2021) Model Crowd and the optimal decision process.

instructions and therefore start with more understanding of
the task. The crowd behavior is comparable for the human
and IBL model in both conditions. We see that the crowd
performs better than the average across participants in both
conditions for the human and IBL models. These results indi-
cate that the crowd performs this task better than the average
individual, and the IBL crowd behavior closely replicates the
human crowd.

The “Thomas et al. Model Crowd” represented by the blue
square in the figures comes from Thomas et al. (2021), and
it is based on the Two-Parameter BART model (van Raven-
zwaaij, Dutilh, & Wagenmakers, 2011). This model assumes
that participants have a target number of pumps for each prob-
lem that they do not adapt over problems, which depends on
their risk propensity and belief about the burst probability of
the balloon (for more details, see Thomas et al. (2021)). Ulti-
mately, the IBL crowd behavior shows improved performance
over that of the Two-Parameter BART model in the P(Burst)
= 0.2 condition, and has slightly worse performance in the
P(Burst) = 0.1 condition.

The optimal performance represented by the red circle
was determined by Monte Carlo simulation in Thomas et al.
(2021), as the optimal number of pumps is challenging to de-
rive. This shows 10 pumps to be optimal for P(Burst) = 0.1
yielding around $4.00 on average, and 4 pumps to be opti-
mal for P(Burst) = 0.2, yielding around $1.60. Thomas et al.
(2021) explained that the optimal performance appears low
because the problems used in Guan et al. (2020) are fairly
unrepresentative of the true environment. As many problems
had late burst trials, it is possible to perform better than opti-
mal, which we see for some human individuals and the human
crowd, as well as for some IBL agents and the IBL crowd.

Figure 4 shows an example of the behavior of humans (a)
and IBL models (b) in which the balloon bursts at pump 15.
We observe comparable pumping behavior for humans and
IBL agents. In this problem we see more IBL agents pumping
more (up to pump 15) when the balloon bursts. But we also
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observe that for the crowd behavior the human crowd banks
at pump 4 and the IBL model crowd banks at pump 3.

Optimal Stopping Task

Figures 5a and 5b show the accuracy distribution for humans
and IBL model agents in the four conditions of the optimal
stopping task. We observe similar distributions of accuracy
between participants and IBL model agents.

We also see that crowd behavior in the IBL model is com-
parable to that of the human participants — in fact, the IBL
model crowd performance is better in the Length 8 conditions
relative to the performance of the humans. The crowd behav-
ior is better than the average participant in all conditions for
both the human and the IBL model agents. This indicates that
the WoC is better than the average participant, and that the
IBL WoC closely replicates the WoC of human participants.

The “Thomas et al. Model Crowd” from Thomas et al.
(2021), represented by the blue square, is based on three
fixed-then-linear strategies used to set thresholds for mak-
ing stopping decisions. That is, participants may have fixed
thresholds over positions and choose the first alternative that
exceeds that threshold; they may have a starting threshold
which they decrease linearly throughout the sequence; or they
may have a fixed threshold for some fixed trials in the se-
quence, which they then decrease linearly. It is assumed that
a participant uses the same strategy for all problems. The
relationship between the human WoC and the Thomas et al.
Model Crowd is similar to that of the IBL model WoC and
the Model Crowd, again suggesting that the IBL model can
replicate the human crowd behavior.

The optimal performance represented by the red circle was
determined according to the findings of Gilbert and Mosteller
(1966), as reported in Thomas et al. (2021). The optimal strat-
egy is to choose the first value that is the current maximum
in the sequence and is above the optimal threshold calculated
based on the position in the sequence. Thomas et al. (2021)
clarify that the optimal performance is surpassed since there



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

are a finite number of experimental problems. We see that
both individuals and the various crowds sometimes have com-
parable or even greater accuracy than the optimal strategy.
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Figure 6: Probability of stopping by position, for individuals
and the crowd for the human participants and IBL agents.

Figure 6 shows the stopping probabilities in the Optimal
Stopping Task at each position in the sequence for the four
conditions. Each solid line corresponds to a particular indi-
vidual’s stopping probabilities over all problems. The dashed
lines correspond to the stopping probabilities of the crowd.
The similarity of the IBL agents to the human participants, as
well as the IBL crowd and the human crowd, indicates that
the IBL model is able to capture the stopping probability of
human participants under each condition, and that the IBL
model is able to replicate the human crowd closely.

Discussion

The WoC, involving an aggregation of individual decisions,
has been shown to be a powerful and effective method of pro-
ducing results that are better than many people in that group
(Surowiecki, 2005). However, it is unclear whether this wis-
dom can be beneficial in sequential decision-making tasks.
Recent research suggests that simple aggregation rules (e.g.,
a majority decision) can result in more optimal stopping de-
cisions in these tasks compared to the stopping decisions of
most individuals in the group (Thomas et al., 2021).

This research builds on the work of Thomas et al. (2021)
by demonstrating that it is possible to use cognitive models to
simulate a crowd of agents and that the WoC resulting from
the simulated crowd is similar to the WoC resulting from hu-
man participants. We demonstrate this idea in two sequen-
tial decision tasks. Importantly, in contrast to the descrip-
tive statistical models in Thomas et al. (2021), we employ
the learning models based on a cognitive theory of decisions
from experience, IBLT (Bugbee & Gonzalez, 2022a, 2022b).
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The simulation results demonstrate how these models provide
predictions of human behavior and that the WoC derived from
the aggregation of the simulated agents results in improved
performance relative to the individual agents. Importantly,
the WoC predictions of the model are similar to the WoC cal-
culated from human data.

The cognitive models we utilize for WoC are learning
models, and this addresses a primary limitation described by
Thomas et al. (2021), in that their statistical models could
not dynamically adapt as human decision makers. Although
Thomas et al. (2021) show that models that fit human data can
generalize to problems in the same class of tasks, our work
demonstrates that a cognitive model that accounts for learn-
ing without relying on specific human data can be used across
distinct tasks of varying structure, while providing compara-
ble individual-level predictions and WoC decisions.

Learning is likely to occur in human participants to some
extent, and there is value in being able to capture behavioral
changes as their experience grows. Our results demonstrate
that the cognitive models we propose can learn to perform
at the same level as human participants and that the WoC
derived from crowds of IBL agents are similar to the WoC
derived from human crowds. In future work, these models
could be applied to settings in which human adaptation is a
prominent feature of the task.
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Abstract

There have been increasing challenges to dual-system
descriptions of System-1 and System-2, critiquing them
as imprecise and fostering misconceptions. We address
these issues here by way of Dennett’s appeal to use
computational thinking as an analytical tool, specifically
we employ the Common Model of Cognition. Results
show that the characteristics thought to be distinctive of
System-1 and System-2 instead form a spectrum of
cognitive properties. By grounding System-1 and
System-2 in the Common Model we aim to clarify their
underlying mechanisms, persisting misconceptions, and
implications for metacognition.

Keywords: dual-system; dual-process; system-1;
system-2; common model; metacognition; computational
architecture

Introduction

This paper re-visits Dennett’s (1981) notion that
philosophical discussion can benefit from the use of
computational modelling. We do this by showing how
recent criticisms of the dual-systems view of the mind
(System-1 and System-2), can be clarified using the
Common Model of Cognition to ground the discussion
(Laird, Lebiere & Rosenbloom, 2017).

The terms System-1 and System-2 refer to a dual-
system model that ascribes distinct characteristics to
what are thought to be opposing aspects of cognition
(Wason & Evans, 1974; Stanovich, 1999; Strack &
Deutsch, 2004; Kahneman, 2003, 2011). System-1 is
considered to be evolutionarily old and characterized as
fast, associative, emotional, automatic, and not
requiring working memory. System-2 is more
evolutionarily recent and thought to be slow,
declarative, rational, effortful, and relying on working
memory. Kahneman (2003) referred to System-1 as
“intuitive” and System-2 as ‘“rational”, thus linking
them to higher level folk psychology concepts. The
neural correlates of System-1 and System-2 have also
been studied (e.g., Tsujii & Watanabe, 2009). System-1
and System-2 are often used in fields such as
psychology, philosophy, neuroscience, and artificial
intelligence as a means for ontologizing the functional
properties of human cognition.

Recently, however, this dual-system model has been
criticized for lacking precision and conceptual clarity
(Keren & Schul, 2009), leading to significant
misconceptions (Pennycook et al., 2018; Houwer, 2019)
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and obscuring the dynamic complexities of
psychological processes (Moors, 2016). One of the
originators of dual-system theory stated that an
important issue for future research is the problem that
“current theories are framed in general terms and are
yet to be developed in terms of their specific
computational architecture” (Evans, 2003).

Following Dennett (1981) we argue that a
computational description is essential for clarifying
high level, psychological characterizations such as
System-1 and System-2. At the time, Dennett received
significant pushback on his view. However, we argue
that it was too early in the development of
computational models to fully appreciate the pragmatic
value of his position.

In the spirit of this endeavour, Proust (2013) has
argued that a more precise computational definition is
needed to understand the role of System-1 and
System-2 in metacognition. Proust defined these
systems in terms of informational typologies (System-1
non-conceptual; System-2 conceptual). Similarly,
Thomson et al. (2015) argued that the expert use of
heuristics (System-1) could be defined in terms of
instance based learning in ACT-R. In fact, there are
numerous ways that cognitive models and cognitive
architectures can and have been mapped onto the
System-1 and 2 distinction. For example, dual-process
approaches to learning have been instantiated within the
CLARION architecture, modelling the interaction
between implicit and explicit processes (Sun, Terry &
Slusarz, 2005). System-1 and 2 have also been
instantiated directly into the LIDA architecture (Faghihi
et al., 2014).

While it is useful to work on modelling different
aspects of System-1 and 2, the larger question is, in
what sense is System-1 and 2 a valid construct? What
are the necessary and sufficient conditions that
precisely define System-1 and 2? And what are the
cognitive and neural alignments to System-1 and
System-2 (Evans, 2003)?

The Common Model

The Common Model of Cognition, originally the
‘Standard Model’ (Laird et al., 2017) is a consensus
architecture that integrates decades of research on how
human cognition functions computationally. The
Common Model represents a convergence across



cognitive architectures regarding the modules and
components necessary for biological and artificial
intelligence. These modules are correlated with their
associated brain regions and verified through
neuroscience (Steine-Hanson et al., 2018). Neural
evidence strongly supports the Common Model as a
leading candidate for modeling the functional
organization of the human brain (Stocco et al., 2021).

The computational processes of the Common Model
are categorized into five components — working
memory, perception, action, declarative memory, and
procedural memory. Procedural memory is described as
a production system which contains units called
production rules (or ‘productions’). The production
system interacts with different modules through
working memory represented as buffers. While these
components are implemented differently among
Common Model-type architectures, they describe a
common functionality across implementations.

System-1

Researchers generally describe System-1 by using a
constellation of characteristics. Specifically, System-1
is described as fast, associative, emotional, automatic,
and not requiring working memory (Kahneman, 2011;
Evans, 2003; Strack & Deutsch, 2004). System-1 is
considered to be evolutionary old and present within
animals. It is composed of biologically programmed
instinctive behaviours and operations that contain
innate modules of the kind put forth by Fodor (1983).
System-1 is not comprised of a single system but is an
assembly of sub-systems that are largely autonomous
(Stanovich & West, 2000). Automatic operations are
usually described as involving minimal or no effort, and
without a sense of voluntary control (Kahneman, 2011).
Researchers generally agree that System-1 is made of
parallel and autonomous subsystems that output only
their final product into consciousness (often as affect),
which then influences human decision-making (Evans,
2003). This is one reason the system has been called
“intuitive” (Kahneman, 2003).

System-1 relies on automatic processes and shortcut
strategies called heuristics — problem solving
operations or rule of thumb strategies (Simon, 1955).
The nature of System-1 is often portrayed as non
symbolic, and has been associated with reinforcement
learning (Barto et al., 1981) and neural networks
(McLeod, 1998). Affect is integral to System-1
processes (Mitchell, 2011). Affect based heuristics
result from an individual evaluating a stimulus based on
their likes and dislikes. In more complex decision-
making, it occurs when a choice is either weighed as a
net positive (with more benefits than costs), or as net
negative (less benefits than costs) (Slovic et al., 2004).

System-1 can produce what are called “cognitive
illusions” that can be harmful if left unchecked. For
example, the ‘illusion of validity’ is a cognitive bias in
which individuals overestimate their ability to
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accurately predict a data set, particularly when it shows
a consistent pattern (Kahneman & Tversky, 1973).
Biases and errors of System-1 operate automatically
and cannot be turned off at will. However, they can be
offset by using System-2 to monitor System-1 and
correct it.

System-1 in the Common Model

System-1 can be associated with the production system
which is the computational instantiation of procedural
memory in the Common Model (Singley & Anderson,
1989). Procedural knowledge is represented as
production rules (“productions”) which are modeled
after computer program instructions in the form of
condition-action pairings. They specify a condition that,
when met, will perform a prescribed action. A
production can also be thought of as an if-then rule
(Anderson, 1993). If'it matches a condition, then it fires
an action. Production rules transform information to
resolve problems or complete a task, and are
responsible for state-changes within the system.
Production rules fire automatically off of conditions in
working memory buffers. Their automaticity is due to
the fact that they are triggered without secondary
evaluation. Neurologically, production rules correlate
with the 50ms decision timing in the basal ganglia
(Stocco, Lebiere, & Anderson, 2010). The production
system can enact reinforcement learning in the form of
utility learning, where faster or more useful productions
are rewarded and are more likely to be used later
(Anderson, 1993). In a similar way, problem solving
heuristics can be implemented as production rules
(Payne et al., 1988).

The Common Model production system has many of
the properties associated with System-1 such as being
fast, automatic, implicit, able to implement heuristics,
and reinforcement learning. However, the Common
Model declarative memory system also has some of the
properties associated with System-1. Specifically,
associative learning and the ability to implement
heuristics that leverage associative learning (Thomson et
al., 2015). Here, it is important to understand that the
Common Model declarative memory cannot operate
without the appropriate productions firing, and without
the use of buffers (working memory). Therefore, from a
Common Model perspective, System-1 minimally
involves productions firing based on buffer conditions,
but can also involve productions directing declarative
memory retrieval, which also relies on buffers. Based
on this, System-1 cannot be defined as being uniquely
aligned with either declarative or procedural memory.
System-1 activity must involve production rules and
buffers, and can also involve declarative knowledge.

System-2

Researchers generally view System-2 as a collection of
cognitive properties, characterized as slow,



propositional, rational, effortful, and requiring working
memory (Kahneman, 2011; Strack & Deutsch, 2004;
Frankish 2010). System-2 involves explicit
propositional knowledge that is used to guide decision-
making (Epstein & Pacini, 1999). Propositional
knowledge is associated with relational knowledge
(Halford, Wilson, & Phillips, 2010) which represents
entities (e.g.: John and Mary), the relation between
them (e.g.: loves) and the role of those entities in that
relation (e.g.: John loves Mary). Higher level rationality
in System-2 is also said to be epistemically committed
to logical standards (Tsujii & Watanabe, 2009).
System-2 processes are associated with the subjective
experiences of agency, choice, and effortful
concentration (Frankish, 2010). The term “effortful”
encompasses the intentional, conscious, and more
strenuous use of knowledge in complex thinking.
Higher level rationality is considered responsible for
human-like reasoning, allowing for hypothetical
thinking, long-range planning, and is correlated with
overall measures of general intelligence (Evans, 2003).
Researchers have studied various ways in which
System-2’s effortful processes can intervene in
System-1 automatic operations (Kahneman, 2003).
Ordinarily, an individual does not need to invoke
System-2 unless they notice that System-1 automaticity
is insufficient or risky. System-2 can intervene when the
anticipated System-1 output would infringe on explicit
rules or potentially cause harm. For example, a scientist
early in their experiment may notice that they are
experiencing a feeling of certainty. System-2 can
instruct them to resist jumping to conclusions and to
gather more data. In this sense, System-2 can monitor
System-1 and override it by applying conceptual rules.

System-2 in the Common Model

Laird (2020) draws on Newell (1990), Legg and Hutter
(2007) and others to equate rationality with intelligence,
where “an agent uses its available knowledge to select
the best action(s) to achieve its goal(s).” Newell’s
Rationality Principle involves the assumption that
problem-solving occurs in a problem space, where
knowledge is used to navigate toward a desired end. As
Newell puts it, “an agent will use the knowledge it has
of its environment to achieve its goals” (1982, p. 17).
The prioritizing of knowledge in decision-making
corresponds with the principles of classical computation
involving symbol transformation and manipulation.

The Common Model architecture fundamentally
distinguishes between declarative memory and
procedural memory. This maps roughly onto the
distinction between explicit and implicit knowledge —
where declarative knowledge can be made explicitly
accessible in working memory, procedural knowledge
operates outside of working memory and is
inaccessible. However, declarative knowledge can also
function in an implicit way. The presence of something
within working memory does not necessarily mean it
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will be consciously accessed (Wallach & Lebiere, 2003).

Higher level reasoning involves the retrieval of
‘chunks’, representing propositional information, into
buffers (working memory) to assist in calculations and
problem-solving operations. This appears to correlate
with what System-2 researchers describe as “effortful”,
as this requires more computational resources (i.c.,
more productions) to manage the flow of information
through limited space in working memory (buffers). As
Kahneman points out, System-1 can involve knowledge
of simple processes such as 2+2=4. However, more
complex operations such as 17x16 require calculations
that are effortful, a characteristic that is considered
distinctive of System-2 (Kahneman, 2011).

Effort, within the Common Model, involves greater
computational resources being allocated toward a task.
Moreover, the retrieval and processing of declarative
knowledge requires more steps and more processing
time when compared to the firing of productions alone.
This longer retrieval and processing time can also
account for the characteristic of “slow” associated with
System-2.

Emotion in System-1 and 2

Emotion and affect plays a vital role in the distinction
between System-1 and System-2 processes (Chaiken &
Trope, 1999; Kahneman, 2011). Decisions in System-1
are largely motivated by an individual’s implicit
association of a stimulus with an emotion or affect
(feelings that something is bad or good). Behavior
motivated by emotion or affect is faster, more
automatic, and less cognitively expensive. One
evolutionary advantage of these processes is that they
allow for split-second reactions that can be crucial for
avoiding predators, catching food, and interacting with
complex and uncertain environments.

Emotions can bias or overwhelm purely rational
decision processes, but they can also be overridden by
System-2 formal rules. While emotions and affect have
historically been cast as the antithesis of reason, their
importance in decision-making is being increasingly
investigated by researchers who give affect a primary
role in motivating decisions (e.g., Zajonc, 1980; Barrett
& Salovey, 2002). Some maintain that rationality itself
is not possible without emotion, as any instrumentally
rational system must necessarily pursues desires
(Evans, 2012).

Emotion in the Common Model

Feelings and emotions have strong effects on human
performance and decision-making. However, there is
considerable disagreement over what feelings and
emotions are and how they can be incorporated into
cognitive models. However, while philosophical
explanations of affect have been debated, functional
accounts of emotions and feelings within cognitive
models have been built. Emotions have been modeled



as amygdala states (West & Young, 2017), and somatic
markers as emotional tags attached to units of
information (Domasio, 1994). In Sigma models, low-
level appraisals have been modeled as architectural self-
reflections on factors such as expectedness, familiarity,
and desirability (Rosenbloom, et al., 2015). Core affect
theory has been modeled in ACT-R to demonstrate how
an agent may prioritize information using emotional
valuation (Juvina, Larue & Hough, 2018). Also,
feelings have also been modelled by treating them as
non propositional representations in buffers or
“metadata” (West & Conway-Smith, 2019).

Overall, the question of how to model emotion in the
Common Model remains unresolved. However, as
indicated in the research above, emotion has multiple
routes for interacting with cognition in the Common
Model.

Effort in System-1 and 2

The concept of “effort” makes up a significant and
confusing dimension of System-1 and System-2. While
it is mainly associated with System-2 rationality, a
precise definition of “effort” remains elusive and is
largely implicit in discussions of System-1 and 2.
Because System-2 is considered to have a low
processing capacity, its operations are associated with
greater effort and a de-prioritizing of irrelevant stimuli
(Stanovich, 1999).

Effort can be associated with complex calculations in
System-2 to the extent that it taxes working memory.
Alternatively, effort can be associated with System-2’s
capacity to overrule or suppress automatic processes in
System-1 (Kahneman, 2011). For example, various
System-1 biases (such as the “belief bias”) can be
subdued by instructing people to make a significant
effort to reason deductively (Evans, 1983). The
application of formal rules to “control” cognitive
processes is also called metacognition — the
monitoring and control of cognition (Flavell, 1979;
Fletcher & Carruthers, 2012). Researchers have
interpreted metacognition through a System-1 and
System-2 framework (Arango-Mufoz, 2011; Shea et
al., 2014). System-1 metacognition is thought to be
implicit, automatic, affect-driven, and not requiring
working memory. System-2 metacognition is
considered explicit, rule-based, and relying on working
memory.

While the concept of “effort” is considered to be the
monopoly of System-2, a computational approach
suggests that effort is a continuum — with low effort
cognitive phenomena being associated with System-1,
and high effort cognitive phenomena being associated
with System-2.

Effort in the Common Model

The Common Model helps to elucidate how “effort”
can be present in System-1 type operations in the
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absence of other System-2 characteristics. While neither
dual-system theories nor the Common Model contain a
clear definition of “effort”, computational
characteristics associated with effort can be necessary
to System-1. For instance, “effort” is often associated
with the intense use of working memory. However, the
Common Model requires working memory (along with
its processing limitations) for both System-1 and
System-2 type operations. There is no reason why
System-1 should necessarily use less working memory
than System-2 in the Common Model. Instead, it would
depend on the task duration and intensity.

System-1 and System-2 metacognition can also be
clarified by importing Proust’s (2013) more precise
account. Proust attempted to elucidate these two
systems by claiming that they should be distinguished
by their distinctive informational formats (System-1
non-conceptual; System-2 conceptual). In this sense,
System-1 metacognition can exert effortful control
while simultaneously being implicit and non
conceptual. For example, consider a graduate student
attending a conference while struggling not to fall
asleep. An example of System-1 metacognition would
involve the context implicitly prompting them to feel
nervous, noticing their own fatigue, and then attempting
to stay awake. This effort is context-driven, implicit,
non conceptual, and effortful. Alternatively, System-2
metacognition can exert effort by way of explicit
concepts, as in the case of a tired conference-attendee
repeating the verbal instruction “try to focus”. Either of
these scenarios could be modelled using the Common
Model, and to reiterate, there is little reason why
System-1 should require less effort.

Another way to think about effort is in terms of the
expense of neural energy. In this sense, effort can be
viewed as the result of greater caloric expenditure in
neurons. The neural and computational dynamics
responsible for the effortful control of internal states
have shown to be sensitive to performance incentives
(Egger et al., 2019). Research also indicates that the
allocation of effort as cognitive control is dependent on
whether a goal’s reward outweighs its costs (Shenhav,
et al.,, 2017). Both of these relate to reinforcement
learning, which is associated with System-1.

Examining this question through the Common Model
suggests that “effort” is not traditionally well defined,
nor is it the sole privy of System-2. Rather, effort can be
involved in processes characteristic of both System-1
and System-2.

Conclusion

The Common Model sheds light on the specific
mechanisms that give rise to the general traits
associated with System-1 and System-2. Interpreting
System-1 and System-2 within the Common Model
results in our concluding that the “alignment
assumption” (that the two systems are opposites) is a
false dichotomy. There are, of course, cases where all



properties of System-1 and System-2 are cleanly
bifurcated on either side. However, between these two
extremities lies a spectrum where the characteristics are
mixed. Few, if any, of these properties are ‘necessary
and sufficient’ to be sharply distinctive of either.

Evidence for this is as follows:

1. System-2 is grounded in System-1. While System-1
depends on procedural memory, so too does System-2.
System-2 cannot operate separately due to the
architectural constraints of the Common Model. Even if
a System-2 process were primarily driven by
declarative knowledge, it would still require System-1
procedural knowledge to be retrieved and acted upon.

2. System-1 and System-2 characteristics are often
mixed as they routinely act together. System-2 goal-
directed rationality often requires affect in the from of a
desired end. Also, System-2 rationality is subject to
System-1 affective biases.

3. Both System-1 and System-2 require working
memory. While conventional views claim that System-1
does not require working memory, the constraints of the
Common Model necessitate it. Production rules
(procedural knowledge) are activated by the content of
buffers (working memory) and hence are required by
both systems.

4. Effort can be directed toward both System-2
rationality and System-1 metacognitive control. The
effortful allocation of cognitive resources in System-1
can be based on an implicit cost-benefit analysis.

Regardless of whether one adopts the Common
Model architecture, researchers should be cautious of
assuming the System-1 and System-2 dichotomy within
their work. The framework is far from settled and deep
issues continue to be unresolved. Questions remain as
to whether System-1 and System-2 constitute an
ontology or a convenient epistemology.

Since before Descartes, substance dualism has
continually been reimagined as mind and soul, reason
and emotions, and opposing modes of thought. These
have been expressions of the human species’ attempt to
make sense of our own minds, its processes, and how
this understanding maps onto our personal experience.
Clearly, System-1 and System-2 captures something
deeply intuitive about the phenomenology of cognition.
However, as we have discussed Kahneman’s System-1
biases it may be worth asking — is System-2 a
System-1 illusion? That is, do we assume the existence
of System-2 simply because we so often act as if it
exists?

By situating System-1 and System-2 within the
Common Model of Cognition, we have attempted to
bring light to this subject by clarifying its underlying
mechanisms, misconceptions, and the base components
needed for future research.
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Abstract

Organizations typically use simulation campaigns to train
employees to detect phishing emails but are non-personalized
and fail to account for human experiential learning and
adaptivity. We propose a method to improve the effectiveness
of training by combining cognitive modeling with machine
learning methods. We frame the problem as one of scheduling
and use the restless multi-armed bandit (RMAB) framework to
select which users to target for intervention at each trial, while
using a cognitive model of phishing susceptibility to inform the
parameters of the RMAB. We compare the effectiveness of the
RMAB solution to two purely cognitive approaches in a series
of simulation studies using the cognitive model as simulated
participants. Both approaches show improvement compared to
random selection and we highlight the pros and cons of each
approach. We discuss the implications of these findings and
future research that aims to combine the benefits of both
methods for a more effective solution.

Keywords: cognitive models; model-tracing; restless multi-
armed bandit; Instance-Based Learning; ACT-R; phishing

Introduction

Phishing remains one of the biggest threats to cybersecurity
in an organization (APWG Phishing Report, 2021). Typical
training of employees involves limited cybersecurity
awareness tutorials and simulation campaigns (Yeoh et al.,
2021). During simulation campaigns, phishing emails are
sent to employees, usually selected at random, and if a user
clicks on a link embedded in the email, then they are given
immediate feedback and training about how to detect
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phishing emails. While the method is effective compared to
no intervention, it may be ineffective if it targets more phish-
aware users than naive users who are more susceptible to
phishing. We believe that simulation campaigns could be
improved through personalization by strategically selecting
who to target. However, to determine who to target for
training, one needs a representation of the cognitive states of
each individual in the organization (i.e., their propensity to
fall victim to a phishing attack).

Recent advances in simulation campaigns attempt to
personalize training to determine which users to select based
on risk propensity (e.g., Cyber Guru, 2019), but these
approaches do not account for human experiential learning
and adaptivity through repeated interactions with the
environment. Recent research in end-user susceptibility to
phishing emails (Cranford et al.., 2021) implies that phishing
classification decisions can be framed as decisions from
experience in accordance with Instance-Based Learning
Theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003). In line
with IBLT, phishing decisions are made by retrieving
classifications from memory and generalizing across past
experiences, or instances, that are similar to the current email.
Decisions are thus influenced by memory effects such as
recency, frequency, and similarity of past emails to the
features of the current email, and contribute to learning and
adaptivity (e.g., Hakim et al., 2020; Singh et al. 2019; 2020).

The present research is a first step toward developing a
training methodology that uses cognitive principles to
determine what users to select to receive training at each time
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step. The problem can be framed as a scheduling problem that
aims to optimize the targeting of users in order to maximize
the overall probability of adopting safe email behavior,
without bombarding users with interventions. Our solution
combines cognitive models of end-user susceptibility to
phishing emails and machine learning methods to identify
users most in need of training. We use the Restless Multi-
Armed Bandit (RMAB) framework that models each user
(arm) as a Markov Decision Process (MDP), using the
cognitive model to define the MDP. RMABS have been used
successfully in healthcare settings to strategically assign
intervention to patients most in need (Biswas et al., 2021),
and anti-phishing training presents an analogous situation.
We also present a purely cognitive approach that
incorporates model-tracing techniques to trace user behavior
and identify which users to select at each time step. The
RMAB solution is compared to the cognitive solution in a set
of simulation studies using cognitive models as simulated
participants. The results show that both approaches are
equally more effective than random selection but differ in
selection preferences. We highlight the pros and cons of each
approach and discuss plans for future research that aims to
combine the strengths of the MAB and cognitive approaches.

Modeling a Phishing Training Task

The task was designed to replicate a real-world phishing
training scenario that could still be implemented in a human
laboratory experiment. Users are run simultaneously in
batches and are presented either a phishing email or a ham
email on each trial as determined by the selection algorithm.
Ham emails are non-spam, non-phish, “good” emails,
intended for the specific recipient with a legitimate purpose.
After each trial, users are provided feedback only after
incorrectly classifying a phishing email, which represents
immediate phishing awareness training from an organization,
while users do not typically receive feedback otherwise.
While human subjects’ experiments are greatly limited by
the number of users that can be run simultaneously in a
laboratory setting (e.g., 10 is a practical number), simulations
are less restrictive. Therefore, in all reported analyses, we
simulated 1000 users (near maximum possible for parallel
simulations with 16GB RAM) for 100 trials of training (near
maximum trials possible in a 1-hour laboratory experiment).

Defining Users

Among the vast individual differences and factors that
influence phishing susceptibility, including demographics
such as age, sex, and education (e.g., Sheng et al., 2010), and
personality and social factors such as the Big 5 or the Dark
Triad (Curtis et al., 2018; Yang et al., 2022), one of the most
important factors is amount of email usage and knowledge
and experience with phishing emails and network security
(Lin et al., 2019; Sheng et al., 2010; Yang et al., 2022). In
fact, these factors of overall email usage and phishing and
network security experience align well with our own theory
that defines user susceptibility to phishing as arising from
decisions from experience as outlined by IBLT. Therefore,
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we designed a set of users that we could simulate in our IBL
model based on individual differences in initialized instances.
Each user in the model is initialized with a random number
of emails (10-100 in increments of 10, uniformly distributed;
Initialized Length), which represents individual differences
in the amount of email usage, of which a random proportion
are phishing emails (0.7-1.0, normally distributed within
limits and rounded to the nearest 0.05, M = 0.85, sd = 0.05;
Ham Proportion), which represents individual differences in
the amount of phishing and network security experience. We
used the same set of users in all simulations reported below.

Cognitive Model Description

Cranford et al. (2021) developed a generalizable IBL model
of phishing susceptibility as arising from decisions from
experience. The model accurately predicted classification
decisions in two different tasks with different databases of
phishing and ham emails: the Phishing Training Task (PTT,;
Singh et al., 2019) and the Phishing Email Susceptibility Test
(PEST; Hakim et al., 2020). This model was used in the
simulations reported below to generate predictions of human
decision making against each selection algorithm and served
as a basis for designing the Cognitive Selection algorithms.

The cognitive model was developed in ACT-R (Anderson
& Lebiere, 1998) and makes classification decisions in
accordance with the IBL process. On each trial, the model
generates a classification decision by retrieving similar past
instances based on the context features of the email. The
features of the emails include the sender, subject, body, link
text, and url. Decisions are thus based on the semantic
similarity between email features. The semantic similarity
values between features of two emails are computed using the
University of Maryland Baltimore County’s semantic
textual-similarity tool (Han et al., 2013), which uses a
combination of latent semantic analysis (LSA) and WordNet.
Retrieval of past instances is based on ACT-R’s blending
mechanism (Lebiere, 1999; Gonzalez et al., 2003) which
returns a consensus value (in this case, a classification of ham
or phish) across all memories, rather than from a specific
memory:

V = argmin Z P x (1 —Sim(V,, V) (1)
i

Vo
The value V is the one that minimizes the dissimilarity
between the possible decisions and the actual decision in
chunk i, weighted by the probability of retrieval P; of the
matching chunk i in memory.
e
P;

= 2)
7 (
dje &
P; reflects the ratio of an instance’s activation A; and
temperature t, which defaults to V2 * s, where s equals the
variance parameter of noise. The activation A; of an instance

i, is determined by:
n

=)

j=1

A; t; %+ MP Z Sim(vy, c) + & 3)
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where the first term reflects the power law of practice and
forgetting, where ¢; is the time since the jth occurrence of
chunk i and d is the decay rate (set to 0.5). The second term
reflects the sum of similarities of each contextual feature k
for the current item ¢ and the corresponding element in
memory chunk v, weighted by the mismatch penalty MP (set
to 2.0). The final term represents noise, a random value from
a normal distribution with mean of zero and variance s of
0.25, and introduces stochasticity in retrieval.

After making a classification, the instance is saved to
memory and influences future decisions. However, if the
email was a phishing email and it was incorrectly classified,
the user is given feedback, and the decision is changed from
ham to phishing to reflect the ground truth classification.

Multi-Armed Bandits Selection Algorithm

The MAB problem is a well-studied online machine learning
setting. In the classic problem, also known as stochastic MAB
(Cesa-Bianchi & Lugosi, 2006), in each round, the learner
(here the security team of the company) selects an arm (here
an employee of the company) for an intervention (here
sending a phishing email) and receives feedback (here the
proficiency of the participant against the phishing attack)
which is typically referred to as the reward. This process
continues for a fixed number of rounds (referred to as the time
horizon) and the goal is to maximize the total reward
observed by the learner.

The classic setting assumes the arms are static such that the
distribution of rewards for each arm remains stationary
regardless of past arm selections. This is not the case in our
setting, as users react to training and potentially become less
vulnerable to future phishing attacks. Various extensions to
MAB have been proposed in the literature to model these
reward distribution changes. The most general framework to
model such scenario is what is known as the RMAB (Whittle,
1998) in which each arm is modeled as an MDP.

Since each arm represents an employee in our problem, the
MDP can be used to model the progress of an employee
throughout training. In general, an MDP is a quadruple
consisting of (1) states (here the different degree of
proficiency of the employee in detecting phishing attacks),
(2) actions (here whether the training has been provided for
the employee or not), (3) rewards or the value associated with
being in each of the states (here whether or not the phishing
attack can fool the employee in the employee’s current state
of proficiency) and the (4) transition probabilities which is a
distribution over the possible next states given the current
state and the chosen action (here how proficiency can change
given the current level of proficiency and whether a training
has been performed or not).

In our problem, we propose the following stylized MDP to
model an employee. We assume there are two states, referred
to as “good” and “bad” states. We further assume that there
only two actions: a training intervention (action 1) and no
intervention (action 2). The rewards for being in a good or
bad state are assumed to be 1 and 0, respectively. The
employee-dependent  transition probabilities can be
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succinctly represented by 4 parameters: pg,, Py, Ppg, and
pﬁg, where p,icy denote the probability of transfer from state x

to state y when action i is taken.*

We used the cognitive model, described above, to generate
the transition probabilities for each user cluster that were
needed for the MDP. We simulated 1000 cognitive agents
performing the task paired against a random selection
algorithm. We defined a good state as a correct classification,
and a bad state as an incorrect classification. Based on the
model’s sequence of decisions, probabilities were computed
as the proportion of transitions from a good or bad state at
time t to a good state at t+1 as opposed to a bad state at t+1,
depending on the action (i.e., type of email sent) at time t.

While cognitive architectures and Markov Decision
Processes (MDP) are quite different modeling approaches,
they also share substantial similarities. Both embody the
Markovian assumption of future behavior being
probabilistically determined by the current state of the system
and inputs from the environment. However, the current state
for cognitive architectures consists of knowledge and skills
held in memories, together with their activation, enabling
both a more graded and combinatorial representation. Also,
state transitions in cognitive architectures are largely
determined by constrained mechanisms resulting from a
theory of cognition, rather than needing to be trained from
data. Therefore, unlike MDPs, cognitive architectures can
make a priori predictions in the absence of data (Lebiere et
al, 2003). Cognitive architectures can then be used to provide
a high-fidelity model of human behavior on a limited set of
available data, then run many times over new generalization
conditions to provide large data sets for training MDPs
(Sycara et al, 2015).

We highlight that in our formulation, while the states, the
actions and the rewards are known, the transition
probabilities for each of the employees are unknown and
should be learned during the learning process. In general,
RMAB problems are computationally hard and optimal
solutions are only known for specific cases. We build on
Whittle Index Q-Learning (WIQL), a recent algorithm
proposed by Biswas et al. (2021), to design an algorithm
which we call SuperArm-WIQL to solve our formulation of
the RMAB problem. Intuitively, had we known everything
about the MDPs in the RMAB problem, we could have used
heuristic algorithms such as Whittle Index (Whittle, 1998) to
decide which employee to target for intervention on any
given round.? Without knowing the MDPs, one can use any
off-the-shelf algorithm to simultaneously learn the
parameters of the MDPs first before applying the Whittle
Index heuristic. Biswas et al. (2021) use Q-Learning for this
process and hence the name WIQL.

1 Since there are two states and two actions, it seems like to fully
represent the transition probabilities we require 8 parameters.
However, observe that p,icy + pi, =1 for all states xy and action i
as the transition will finally move to either of the two available
states. Therefore, we can reduce the total parameter to only 4.

2 We ignore the issue of indexability and conditions in which the
Whittle Index heuristic is optimal.
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The downside of such an approach is that learning the
parameters of the MDP for each employee separately will
result in a time and computational cost which is proportional
to the number of employees. In practice, each round of
sending phishing emails is costly and furthermore, the
amount of available phishing emails is limited. Hence,
naively applying WIQL will be too time-consuming, slow,
and impractical. To deal with this problem, we first cluster
the employees (or arms) into different groups (or super arms)
and combine the learning experiences of all the users
together. We call this algorithm SuperArm-WIQL. In the
extreme, where there is only one arm per group, SuperArm-
WIQL reduces to WIQL but with a small number of groups
(compared to the total number of employees) and sufficiently
similar arms in each group, SuperArm-WIQL will converge
to a good policy much quicker.

We performed a K-means cluster analysis on the set of
users described above to minimize the within-cluster sum of
squares based on the Initialized Length and Ham Proportion
attributes. A scree plot revealed four clusters were optimal
(SSpet/SStor = 71.67%). Figure 1 shows the visualization
of the four clusters, which we labeled according to their
location in the landscape of Initialized Length and Ham
Proportion: 1 = “high-high”, 2 = “low-low”, 3 = “low-high”,
and 4 = “high-low”.

cluster

z Ham Proportion

z Init Length

Figure 1: Cluster plot of simulated users
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Figure 2: RMAB simulation results.

49

Simulation Results

The results of the RMAB simulation using the SuperArm-
WIQL are presented in Figure 2, compared to Random and
NoAction (no users selected for intervention) selection
algorithms. Rewards are calculated as the sum of users in a
good state (i.e., correctly classifying a given email) at each
trial, and the plot shows the moving average reward with a
window size of 50. To start the simulations, users are
randomly assigned to states with 50% probability, and
quickly transition toward good states. The NoAction and
Random algorithms show that performance quickly plateaus
as users align with the average transition probabilities given
the possible actions. The results of the NoAction algorithm
are a bit misleading because it only measures user proficiency
in classifying ham emails (which is already high) and does
not account for proficiency with phishing emails. Most
notably, the results show that by selecting users strategically,
the RMAB (blue) outperforms the Random algorithm (green)
in terms of the number of users in good states, and continues
to improve across trials, eventually outperforming the
NoAction algorithm (red).

Cognitive Selection Algorithms

We designed two versions of the cognitive selection
algorithm. The cognitive selection algorithms use cognitive
principles to select which users to send phishing emails to on
each trial, given a budget of 20% on each trial. Both methods
use a technique called model tracing to track a user’s history
of decision making (e.g., Anderson et al., 1995). For each
trial, the algorithms store information about what email was
presented to each user and what their decision was. This
history is then used in the blending equation described above
to compute probabilities of classifying an email as ham
(Vham) or phishing (Vyp;sr), Without adding any noise &;.

The first method, Cog-Low, simply computes the overall
probability of classifying an email as ham or phishing at time
t, without using the partial matching term. Therefore, the
probabilities only reflect the influence of recency and
frequency of all past instances. The participants with the
lowest probability of classifying an email as phishing are
selected for intervention (i.e., are sent a phishing email), with
the hypothesis that their future probability of classifying
phishing emails correctly will improve. The algorithm thus
seeks to always improve the worst users on each trial.

The second method, Cog-EV, uses a more complex
calculation that weighs the anticipated future benefits of
sending a phishing email, in terms of correctly classifying
phishing emails, against the anticipated future costs, in terms
of incorrectly classifying ham emails, to determine which
users will most benefit from a phishing training intervention.

As another improvement over Cog-Low, Cog-EV includes
the partial matching term to determine the probabilities of
correctly classifying an email of category k (ham or phish).
Similarities are computed by averaging across the similarity
of instance i to all other instances of the same category k.
After computing the initial probabilities, another phishing
instance is added to the user’s history to compute the future



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

probabilities of correctly classifying a ham or phishing email
given a phishing intervention. The expected value for sending
a phishing email (EV;,tervention) 1S reflected by the equation:

t+1 t
EV _ (Vphish|intervention - Vphish) - 4
intervention — Vt t+1 ( )
( ham ~— ham|interuenti0n)

where Vipisn and Vi, are the probabilities of correctly
classifying a phishing or ham email, respectively, and are
derived via blending.

Cognitive Simulations

We used instances of the cognitive model as simulated users
to predict the effectiveness of the selection algorithms against
humans. All simulations were seeded with the same initial
random state and started with the same set of initialized users
to ensure consistent replication. We used ACT-R’s built-in
mechanism for running multiple models in parallel. The
selection algorithm determined which user to send phishing
emails to on each trial. To minimize repeated presentation of
emails per user, we used the 186 phishing emails from the
PTT but combined the ham emails from both the PTT and the
PEST, for a total of 177 ham emails. We compared the
RMAB, Cog-Low, and Cog-EV algorithms to two baseline
algorithms, NoAction and Random (random selection from a
uniform distribution), resulting in 5 total conditions.

Results

The moving average accuracy across trials, with a window
size of 50, is presented in Figure 3. The NoAction condition
represents the high baseline accuracy in classifying ham
emails correctly given no phishing training intervention.
Between all other conditions, the RMAB and Cog-EV
conditions perform best in terms of overall accuracy, but
there is an interaction between phishing and ham accuracy
such that phishing accuracy increases at the expense of ham
accuracy. This reflects the tradeoff in signal detection due to
frequency and recency effects.

Phishing accuracy improves the least in the RMAB
condition, while the Random, Cog-Low, and Cog-EV
conditions display similar improvements. However, the
RMAB and Cog-EV conditions display the least decline in
ham accuracy, while there is a greater decrease in Random.

and more so in Cog-Low. These results are however difficult
to interpret because they do not reflect differences in user
selection preferences. It is possible that some algorithms are
sending users the type of email that they are most likely to
get correct, thus artificially inflating the overall accuracy.
Therefore, we examined which users are being sent phishing
emails as well as unbiased signal detection measures.Figure
4 shows a scatterplot of the mean accuracy for phishing and
ham emails for each user, colored according to the proportion
of phishing emails received, which is normalized within each
selection condition (z-score). The results reveal distinct
selection profiles. Accounting for the distribution of phishing
emails across clusters, depicted in Figure 5 (z-scored phishing
proportions), the Random condition displays no selection
preferences and user accuracy trends with their phishing
proportion. The RMAB selects users with high email
experience and most phishing emails (high-low), which
incidentally are already good at classifying phishing emails,
while users that are poor at classifying phishing but good with
ham emails receive more ham emails (top left tail of
scatterplot). The Cog-Low mostly selects users with high
experience and fewest phishing (high-high) which
hypothetically need the most intervention, while sending the
fewest phishing emails to the group that needs least
intervention (low-low). The Cog-EV mostly send phishing
emails to the users with low email usage (low-low and low-
high), which are ones in which a training intervention will be
most impactful, while sending the fewest phishing emails to
the high-low group. However, there are a number of users
that receive many phishing emails and thus their ham
accuracy suffers (bottom right tail of scatterplot). If false
alarms are not costly for a user or organization (i.e., by not
responding important emails or causing excessive
verification work for the security team) then this may be an
acceptable solution.

Finally, to get a sense of the overall improvement of users
from the start of the training task (“Initial” state) to the end
of the training task (“Final” state). We examined change (A)
in d-prime scores from the first 20 trials of the task to the last
20 trials of the task. We used a loglinear adjustment to
account for missing cells when computing the hit rates and
false-alarm rates (Stanislaw & Todorov, 1999). The results in
Figure 6 show that Random selection improves sensitivity for

Total Moving Average Accuracy Moving Average Accuracy per Email Type  Selection
Algorithm
1.0 1.0
° I NoAction
2 0.9 0.94
= I Random
© 038+ 0.8 B RVAB
[=]
£ 0.7 0.7 1 I Cog-Low
o
Cog-EV
S 0.6- 0.6- °g
* 0.5+ 0.54 Email Type
T T T T T T T T T T T T T T T T T T T T T T
50 55 60 65 70 75 80 85 90 95 100 50 55 60 65 70 75 80 85 90 95 100 HAM
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Figure 3: Moving average accuracy across trials for each selection condition. Total (left) and by Email Type (right). ws = 50.
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Figure 4: Scatterplot of individual ham and phishing
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users with lowest ham experience (high-low and high-high).
The RMAB only improves the high-high even though they
received the fewest phishing emails, but performance
declines significantly for the low-low group. The Cog-Low
improves performance more as the number of phishing
emails presented increases. And lastly, Cog-EV is the only
condition that improves sensitivity across all clusters.

Conclusion

Our simulations demonstrate the benefits of personalized
anti-phishing training for organizations. The cognitive model
proved useful in estimating transition probabilities for the
MDP, and the RMAB was effective at improving
performance. However, selection preference analyses
revealed potential shortcomings of each of the methods. For
one, the reward function for the RMAB should be redesigned
so that it learns to send phishing emails to those most in need
of intervention instead of those doing well. Current research
is exploring methods such as defining states in terms of only
phishing accuracy, but this would only lead to improvements
in phishing classification. Another method could be to define
rewards in terms of the users that misclassify emails (i.e.,
rewarded for intervening on those users that needed it).
Overall, the Cog-EV algorithm proved most successful at
increasing phishing detection while minimizing false alarms.
Future research will aim at validating these simulation results
in human laboratory experiments. One limitation of the
current simulations is that users were only given phishing
emails as training interventions. However, it may be more
realistic for users to receive phishing emails with some small
probability in non-intervention events. We will consider this
design change and its implications for selection algorithms.
The cognitive solutions have lower computational
overhead and thus an advantage of selecting users at the
individual level, while the RMAB is limited to generalizing
at the group level. It is likely that the RMAB would perform
better as the number of clusters approaches the number of
users. Therefore, future research is aimed at finding the
optimal tradeoff between the number of clusters and
computational costs. Future research is also aimed at
implementing a method that takes advantage of the benefits
of both RMAB and cognitive models. For example, the
cognitive model could be used to provide updated transition
probabilities or additional learning rate parameters that can
be used by the RMAB. Such an approach could both alleviate
computational costs for the RMAB while providing more
accurate predictions of individual behavior than Q-learning.
Finally, in other future research we plan to investigate not
only whom to target but also which specific email to send and
how to tailor emails to an individual. Such an approach could
leverage information about what email features an individual
is most susceptible to (e.g., Singh et al., 2020) or the type of
attack for which they are most likely to fall prey (e.g., email
characteristics or social engineering strategy used, or topic
relevance; De Kimpe et al., 2018; Lin et al., 2019; Parsons et
al., 2019). In this sense, IBL cognitive models are perfectly
suited for every aspect of personalized anti-phishing training.
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Abstract

Performance on the psychomotor vigilance test (PVT; Dinges
and Powell, 1985)—a common index of sustained atten-
tion—is affected by the opposing forces of fatigue and sus-
tained effort, where reaction times and error rates typically in-
crease across trials and are sometimes offset by additional ef-
forts deployed toward the end of the task (i.e., an “end-spurt”;
c.f. Bergum and Klein, 1961). In ACT-R (Adaptive Control
of Thought-Rational; Anderson et al., 2004), these influences
on task performance have been modeled as latent variables
that are inferred from performance (e.g., Jongman, 1998; Vek-
sler and Gunzelmann, 2018) without connections to directly
observable variables. We propose the use of frontal gamma
() spectral power as a direct measure of vigilant effort and
demonstrate its efficacy in modeling performance on the PVT
in both the aggregate and in individuals.

Keywords: ACT-R; EEG; fatigue; vigilance; microlapse

Introduction

A well-documented phenomenon in human performance re-
search is the decline in performance during extended vigi-
lance tasks due to cognitive and physical fatigue (c.f., Ack-
erman, 2011). The relative simplicity of common sustained
attention tasks, such as the psychomotor vigilance test (PVT;
Dinges and Powell, 1985), however, overshadows the com-
plex and arcane connections between task outcomes and the
neural mechanisms that give rise to these outcomes (Ishii
et al., 2014; Kim et al., 2017). Despite this, changes in
electroencephalographic (EEG) activity have been shown to
provide a potentially reliable marker of mental fatigue (Tran
et al., 2020).

One way to examine links between cognitive and neural
mechanisms of sustained attention is by integrating data from
behavioral and neural sources into a single model (Turner
et al., 2017). In the ACT-R (Adaptive Control of Thought-
Rational; Anderson et al., 2004) cognitive architecture, for
example, researchers have begun to use event-related poten-
tials (ERPs; Cassenti et al., 2011) and neural “blips” (Borst
and Anderson, 2015) to link selection and duration of indi-
vidual behaviors (productions) to EEG data. Despite exten-
sive work on modeling the effects of time-on-task (Veksler
and Gunzelmann, 2018) and sleep deprivation (Gunzelmann
et al., 2009, 2015) on the PVT, ACT-R practitioners have yet
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Figure 1: Observed relative gamma spectral power density
across 2 minute time bins during the PVT. From Borghetti
etal. (2021)L.

to directly investigate the use of EEG in modeling fatigue-
related decrements during vigilance tasks.

We propose the use of estimated power in frontal gamma
(y) wave forms in models of vigilant attention. Specifically,
we argue that y power measured during the PVT is a reliable
index of sustained attention that reflects fatigue (e.g., perfor-
mance decreases across time) and compensation (e.g., end-
spurts) and can be directly applied to ACT-R parameters. To
this end, we first review relevant investigations of EEG and
ACT-R as they relate to vigilance and then introduce a method
for incorporating Yy power into ACT-R models of the PVT.

EEG and Fatigue

Recently, Borghetti et al. (2021) reported a study examining
electrophysiological measurements from 34 young adult par-
ticipants (Mg = 22.6) over the course of a 10-min PVT in
which participants were asked to respond immediately when
a stimulus appears on the screen. Vigilance decrements dur-
ing the PVT were exemplified by positive shifts in the dis-
tributions of reaction times, indicating increasingly slower
responses, as well as increases in premature responses, i.e.,
false alarms (Doran et al., 2001). The results of the behavioral
task also show a slight improvement in task performance in
later trials, indicating an increase in effort, i.e. an “end-spurt”
(e.g., Bergum and Klein, 1961).

The authors examined spectral power density, or an esti-
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mate of the power in a neural signal given a particular fre-
quency, over the course of the 10-min task, focusing on theta
(06, 3-8 Hz), alpha (&, 9-14 Hz), beta (B, 15-30 Hz), and
gamma (Y, 30-100 Hz) wave forms'. The top half of Figure
1 illustrates the main findings of the study: Significant trends
indicating decreases in 7y spectral power across time-on-task
in both the frontal (Fz) and parietal (Pz) regions of the brain,
with a significant end-spurt toward the end of the task (Morris
et al., 2020). Borghetti et al. (2021) concluded that frontal 7y
indexes the dynamic between fatigue and sustained attention
in the PVT. This is consistent with similar research indicating
increases in Y activity across vigilance tasks (Kim et al., 2017)
and positive associations between task performance and am-
plitudes of vy oscillations (Herrmann et al., 2010).

Fatigue and Compensatory Effort in ACT-R

The ACT-R cognitive architecture provides a rich environ-
ment for investigating effort and fatigue in goal-driven tasks,
where influences on effort during the task are modeled as pa-
rameters affecting the selection and execution of procedural
knowledge, i.e., “productions”. During the course of the task,
the model selects productions with the greatest estimated util-
ities (U), or a parameter indicating the strength and appropri-
ateness of a given behavior at a given time. In prior versions
of ACT-R, utilities were determined by the probability that a
given goal will lead to success (P), the value of the current
goal (G), and the cost of using that particular production to
reach a goal (C). In the current version, production selection
is a function of an initial utility value parameter (v), noise
on this value (62), and a threshold parameter (t), wherein the
model selects the production with the highest above-threshold
utility value to fire. Production utility values can either re-
main static or can update to reflect changes in the model’s en-
vironment, such as production learning/reinforcement (e.g.,
Lovett and Anderson, 1996).

Previous studies have conceptualized vigilant effort as a di-
rect influence on production utilities. Jongman (1998), for ex-
ample, used parameterized “motivation” in a previous ACT-
R architecture to directly influence G, where greater G val-
ues represent greater effort allocated toward achieving a goal
and lead to better task outcomes, but lower G values result in
firing inappropriate productions. Belavkin (2001) also used
G to influence utility values, but conceptualized the param-
eter as reflecting a more general “arousal” state, where de-
creases in G result in fewer above-threshold productions, re-
sulting in “giving-up” behavior. In contrast, Gunzelmann
et al. (2009) simulated fatigue by imparting its effects on both
utility values (through the G parameter) and 7 as a function of
“arousal” (A), which is derived from biomathematical esti-
mates of arousal (c.f. Van Dongen, 2004). The decrease in

IThese results are based on a correction to the gamma spectral
power analyses. In the original version of the paper, gamma es-
timates decreased sharply between 0 and 2 minutes and declined
slightly across minutes 2 and 10. The corrected analyses indicate
that gamma power increases between time bins 4 (6 - 8 m) and 5 (8
- 10 m), as shown in Figure 1.
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utility and 7 values represent the deleterious effects of fatigue
and efforts enacted to compensate for fatigue, respectively.
Gunzelmann et al. (2009) also incorporated “microlapses”,
or simulated lapses in attention. Microlapses occur when the
utility module is unable to select a production, such as when
all utility values are lower than . The occurrence of a micro-
lapse results in a penalty to utility values and thus increases
the probability of future microlapses. While the number of
microlapses that occur during a simulated task is not con-
trolled by the modeler, the penalty to utility values can be
freely-estimated.

More recently, Veksler and Gunzelmann (2018) general-
ized decrements in arousal as stemming from the effects of
time spent engaging in the task (“time-on-task™) and simu-
lated microlapses. Specifically, the authors estimate the util-
ity of a production U by imposing a penalty on the initial
production utility value (v) as a function of both the number
of microlapses (N,;;) and the time spent on the experiment (¢):

(D

where v is the initial utility value parameter, ¢ is time spent
on the task (scaled to minutes), A scales the effect of micro-
lapses on utility values, and p scales the effect of time-on-
task. As fatigue increases and production values decrease,
the probability of sampling an inappropriate production in-
creases, leading to increases in false alarms.

In contrast, the production utility selection threshold is
only affected by time-on-task:

U(r) =0 M (1+1)P),

UT(1) =1 (1+1), 2)

where 7 is the initial utility theshold parameter and k scales
the effect of time-on-task on the threshold. Lower thresh-
olds under conditions of fatigue allow the model to select pro-
ductions whose v values have decreased. This compensation
is imperfect, however, as lowering the production selection
threshold also allows the model to fire productions that are
not appropriate for the context. In models of the PVT, this
leads to increases in false starts and misses.

Candidates for Integration

We now review mechanisms for 1) translating 7y spectral
power to units appropriate for use in ACT-R simulations and
2) applying transformed 7y estimates to the ACT-R cognitive
architecture.

Scaling Spectral Power Estimates. Similar to previous re-
search (e.g., Belavkin, 2001; Gunzelmann et al., 2009; Jong-
man, 1998; Veksler and Gunzelmann, 2018), we conceptu-
alize sustained attention as a parameter { that is typically
bounded between zero and one. In the proposed model, how-
ever, { can occasionally exceed its upper bound, meaning that
parameterized effort cannot go below zero (meaning “abso-
lute” fatigue), but can surpass unity (meaning “extra” effort).
Thus, € can capture decrements due to fatigue as well as com-
pensatory efforts that offset fatigue, such as the end-spurt ef-
fect (Morris et al., 2020).
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Param. Description Bounds Value £ Model?
) Initial production utility value [0.0,Inf]  Free Yes
T Initial production utility theshold [0.0,Inf]  Free Yes
p Production utility time-on-task penalty [—1.0,0.0]  Free No
K Utility threshold time-on-task penalty ~ [—-1.0,0.0]  Free No
A Microlapse penalty [0.0,1.0]  Free Yes
0 Conflict resolution time N/A 0.05 Yes

Table 1: Descriptions of fatigue-related parameters in the ACT-R model of the PVT. The “Value” column indicates if a value
is freely-estimated, and if not, what the value is fixed to. The “{ Model?” column indicates if the parameter is included in the
model that uses y power as a performance moderator. All 6 parameters are included in the full (“Fatigue”) model (c.f. Veksler

and Gunzelmann, 2018).

One way to normalize fatigue moderator values is by ad-
justing the values to the smallest value and the range of the
values. This normalization method has been used to scale
biomathematical estimates of arousal in previous investiga-
tions of the PVT (Gunzelmann et al., 2009), where estimates
start with high values and monotonically decrease as a func-
tion of time. An interesting aspect of this method that is re-
flected in the fatigue moderators proposed by Gunzelmann
and colleagues (Gunzelmann et al., 2009; Veksler and Gun-
zelmann, 2018) is that the normalized values start at 1 (the
highest possible value) and decrease with time-on-task, im-
plying that performance cannot meet or exceed that from
t = 1. Therefore, we opted to normalize 7; to the first ob-
servation in order to simulate end-spurt effects.

Given a set of observed spectral power estimates (total or
relative) I'; = {Yi1,...,%i, }, for participant i at time ¢, as well
as the range of these values, y,, = range{Y; 1,...,%i}, we can
calculate effort as:

Yir — i
=1+ ( : : ) .
Ci T

3

Here, {;; = 1 and all subsequent values are interpreted as
diminished effort due to time-on-task ({;; <; 1) or additional
(i-e., compensatory) effort compared to baseline (§;; > C; 1),
allowing the model to account for end-spurt effects.

Applying Fatigue Decrements. The theoretic interpreta-
tion of y with respect to vigilance is intentionally vague
(i.e., an index of sustained attention) and does not allow for
a straightforward implementation of the { parameter in the
ACT-R architecture. In these simulations, we integrate pa-
rameterized effort in a linear function with the initial produc-
tion utility parameter v (similar to Eq 1) with brief lapses in
attention. Therefore, the modulated utility value at a given
time, U(¢), can be calculated as a function of v, {, and the
number of simulated microlapses (N,;):

U(t)=0- A" -Gl )

The Current Study

The estimated penalties to utility values and thresholds in
ACT-R are imperfect. First, they are “smoothed” approxima-
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tions of behavior and are unlikely to directly capture stochas-
tic, asynchronous intraindividual variability across time, lead-
ing to error inflation when fitting fatigue parameters to indi-
vidual participants. Second, these mechanisms are indirect
inferences resulting from observations of behavioral data and
have yet to be empirically linked to outside indicators.

The current project addresses these issues by examining the
extent to which neural indices of vigilance correspond to the
deleterious effects of fatigue in the PVT. Specifically, spectral
power density in Y waveforms is expected to accurately cap-
ture fatigue and effort in ACT-R models of task performance.
We expect to find that models using the observed power den-
sity estimates (Equations 3 and 4) in place of fatigue functions
(Equations 1 and 2) will fit the observed data as well as, if not
better than, models with these functions in both the aggregate
and at the level of the individual.

Methods

Thirty-four adult volunteers (Myge = 22.60; SD g, = 4.08) re-
cruited through the University of Dayton Research Institute
(UDRI) participated in a single 2-h study session consisting
of three experiment tasks with simultaneous EEG recording.
The study was approved by institutional review boards at both
UDRI and the Air Force Research Laboratory (AFRL), and
all individuals were compensated for their participation in the
study.

We provide a quick overview of the behavioral and elec-
trophysiology methods below; further details can be found in
Borghetti et al. (2021).

Behavioral

Participants were asked to participate in a 10-m PVT task as
a part of the 2-h study session. During the PVT, participants
were asked to monitor a computer screen with a black back-
ground and to press “j” on a standard computer keyboard as
quickly as possible to a target stimulus, i.e., white numbers in
the middle of the screen displaying the time (in ms) since tar-
get onset. The time in between the previous response and the
onset of a new stimulus, the interstimulus interval (ISI), was
randomly selected from an interval between 2 and 10 s. ISIs
were exact integers and selected from a uniform distribution.
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Figure 2: Performance data by time bins for average RTs for
valid trials (left) and average proportion of lapses (right). Er-
ror bars represent the standard error of the mean.

EEG

Briefly, participants were fitted with an EEG cap with 64
electrodes, with 2 flat, unlinked electrodes applied to the
mastoids. These data were processed using custom MAT-
LAB scripts along with the EEGLAB toolbox (Delorme and
Makeig, 2004). After applying a 1 Hz high-pass filter and
removing artifacts, these data were epoched into segments of
41500 ms with respect to stimulus onset and divided into
five, 2-m time bins. For the gamma spectral analysis, we as-
sayed power in the 70-100 Hz frequency band for frontal (Fz)
and parietal (Pz) cortical regions.

Computational

The computational model was programmed using a Julia lan-
guage (Bezanson et al., 2017) implementation of the ACT-
R cognitive architecture (Anderson et al., 2004). In ACT-R,
the PVT has been modeled as a time-inhomogenous semi-
Markov process consisting of three phases (Gunzelmann
et al., 2009; Veksler and Gunzelmann, 2018): Wait, Attend,
and Respond. The Wait production occurs prior to stimulus
onset in anticipation of the next trial, while the Affend and
Respond productions occur after a critical stimulus has been
visually processed and after the decision has been made to en-
gage in a response, respectively. These productions typically
occur in the Wait-Attend-Respond sequence, but the order can
be disrupted if an inappropriate production is selected on the
basis of low utility values (U). This can lead to false starts,
where the Respond production is selected in the absence of
a valid stimulus (i.e., RTs < 150 ms), and lapses, where the
model fails to select the Attend or Respond productions in
the presence of a valid stimulus (i.e., RTs > 500 ms). Addi-
tionally, response latency is penalized whenever there are no
productions that exceed the production utility threshold (UT)
by adding 50 ms for each occurrence (microlapse; c.f. Gun-
zelmann et al., 2009).

Importantly, the ACT-R model of the PVT simulates fa-
tigue by applying a penalty to a) only initial utility values
(Belavkin, 2001; Jongman, 1998) or b) both initial utility val-
ues and utility thresholds (Gunzelmann et al., 2009, 2015;
Veksler and Gunzelmann, 2018). Here, we only penalize util-
ity values derived from Equations 3 and 4 based on re-scaled
gamma power estimates. Table 1 provides descriptions of the
parameters, the ranges of possible values, and the models that
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Figure 3: Best-fitting estimates for v and 7 (left), A (top right),
and associated AIC values (bottom right).

they are used in.

Results
Behavioral

We performed statistical analyses on responses categorized
into 3 types: False starts (RTs < 150 ms), lapses (RTs >
500 ms), and valid responses (150 ms < RTS < 500 ms).
For computational ease, we binned the data into five, 2-m
bins and applied an inverse transformation to the RTs, i.e.,
1/(RT % 1000) (Ratcliff, 1993).

A repeated measures ANOVA on the aggregated inverted
RT values with a Greenhouse-Geisser correction on the de-
grees of freedom (W = 0.53, p = 0.02) indicates that the ef-
fect of time bin is significant, F(2.89,98.41) = 11.54, p <
0.05, where average RTs increase between the first and fourth
time bins (i.e., minutes O - 8), but decrease slightly in the fifth
time bin (i.e., minutes 8 - 10; c.f. Figure 2). A similar one-
way logistic GLM on lapses indicates that the log-odds of this
type of response change across time bins, F(4,3652) = 3.48,
p < 0.05, where lapse rates decrease between bins 1 and 2,
increase between bins 2 and 4, and then decrease again be-
tween bins 4 and 5 (c.f. Figure 2). A one-way logistic GLM
indicates that the probability of a false start on any given trial
is not different across time bins, F'(4,3651) < 0.1.

Spectral Power

For frontal y (Figure 1), a Friedman test on total power es-
timates across time bins is significant, >(4) = 11.3, p =
0.02. Follow-up paired comparisons indicate that estimates
increase significantly between bins 2 and 3, p < 0.05, de-
crease significantly between bins 3 and 4, p < 0.05, and in-
crease with marginal significance between bins 4 and 5, p =
0.07, although only the significance of the first comparison
survives after Bonferroni corrections to the degrees of free-
dom.

Computational

We estimated the parameters for two different models—one
using the fatigue moderators described by Veksler and
Gunzelmann (2018) and another using gamma power esti-
mates—using the data from individual participants and ag-
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Parameters Fit Indices
Estimate ~ Model ) T p K A 2LL AIC BIC
Fatigue 4.01 2.90 -0.28  -0.20 0.98 5829.99 5839.99 5877.58
Aggregate
Gamma | 3.15 2.07 - - 0.74 3920.76  3926.76  3949.25
Fatioue 5.78 0.32 -0.41 -0.17 0.81 6591.08 6601.08 6604.58
. & 0.51) (0.08) (0.05) (0.03) (0.03) | (227.69) (227.69) (227.69)
Individual
3.36 2.74 - - 0.73 4090.21 4096.21 4098.01
Gamma
0.08) (0.07) - - (0.01) | (424.64) (424.64) (424.64)

Table 2: Best-fitting parameters for aggregated data (top) and summary statistics of the best-fitting parameters for individuals
(bottom). For individuals, we report the means and standard errors of the mean (in parentheses) of these estimates. “Fatigue”
refers to models using the decrement parameters described by Veksler and Gunzelmann (2018) while “Gamma” refers to the

proposed model.
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Figure 4: Reaction time distributions for valid responses
across time bins for observed RTs (blue) and simulated RTs
generated using the Gamma model (yellow).

gregated across all participants. Model fit was calculated us-
ing the summed log-likelihoods of the simulated RT data to
log-normal distributions based on the observed RTs. We used
a simplex search algorithm via Optim.jl (Mogensen and
Riseth, 2018) to find the parameter values that maximized the
likelihood of the two PVT models given the observed data.
We repeated the optimization procedure 15 times for each set
of data, using new starting values on each iteration to avoid
local minima. Table 2 details the best-fitting parameters by
data source (“Aggregate” vs. “Individual”) and by the type of
model (“Fatigue” vs. “Gamma’).

Overall, the model using gamma spectral power density as
a direct influence on utility values provides a better fit to the
observed data than the model using established computational
fatigue moderators. For the aggregated data, the difference
in fit statistics suggest that there is decisive evidence (Kass
and Raftery, 1995) in favor of the Gamma model, logB;o =
1928.33. Similarly, the difference in average fit values across
all participants for the two models also suggests that there
is decisive evidence in favor of the Gamma model, logBjo =
2506.57. Across individuals, the Gamma model is favored
over the Fatigue model for all but 5 of the 34 participants in
the study.

Discussion

In this paper, we introduced an ACT-R model of vigilant at-
tention that directly integrates frontal y spectral power density
estimates into the parameters of the model that influence task
performance. We compared the ability of the new model to
fit observed RT data to that of a similar model of PVT perfor-
mance and found that the proposed model provides a better fit
to both aggregated and individual data than previous models
of fatigue. These results suggest that frontal y power esti-
mates can be used as a measure of sustained attention and
effort in models of vigilance.

The proposed model represents an initial step in develop-
ing models of fatigue and vigilance that incorporate directly-
observable neural data. In this model, changes in observed
neural data simply constrain the parameters of the behavioral
model, i.e., a “direct-input approach” (Turner et al., 2017),
implying a unidirectional influence. Future models, however,
will need to simultaneously account for both neural and be-
havioral data and account for the bidirectional relationship
between the two. Similarly, the use of frontal y power in our
model represents only one potential application of EEG data
in cognitive models; our future research will use similar mod-
els to explore how other neural indices, such as beta () and
alpha () frequency bands, can be used as observable esti-
mates of fatigue and arousal in computational models of vig-
ilance.
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Abstract

Previous research using goal-directed computational models
has demonstrated that microlapses, or brief disruptions in ef-
fortful cognitive processing, are related to decreases in vigi-
lance as a function of time-on-task in the psychomotor vig-
ilance test (PVT) (Veksler and Gunzelmann, 2018). We ex-
tended these computational accounts of fatigue to model per-
formance in two vigilance tasks that differ with respect to de-
mands on working memory, i.e., successive vs. simultane-
ous discrimination (Davies and Parasuraman, 1982). While
task performance was not affected by working memory de-
mands, simulations show that fatigue moderators successfully
capture decreases in vigilance over time. Additionally, partic-
ipants showed greater individual differences in model parame-
ters related to task performance, but not in the effects of fatigue
across time. These results highlight the importance of fatigue
moderators in computational accounts of vigilance tasks.

Keywords: ACT-R; fatigue; vigilance; microlapse

Introduction

The ability to direct and sustain attention over prolonged pe-
riods of time is essential to normal functioning in adults.
Specifically, the ability to sustain conscious processing of a
particular set of stimuli for periods longer than 10 s, or “vig-
ilant attention” (VA; Robertson and Garavan, 2004; Robert-
son and O’Connell, 2010; Langner and Eickhoff, 2013), is
directly linked to performance on continuous detection tasks
such as the psychomotor vigilance test (PVT), where partic-
ipants are asked to respond immediately upon presentation
of a stimulus (Dinges and Powell, 1985). The PVT has tradi-
tionally been used to demonstrate decreases in VA under con-
ditions of fatigue, where increases in degree of sleep loss are
positively associated with response errors and latency (Doran
et al., 2001; Dorrian and Dinges, 2004; Gunzelmann et al.,
2009b). While most studies examine changes in PVT per-
formance over the course of multiple days (typically coupled
with sleep deprivation), researchers have also detected and
modeled vigilance decrements over the course of single ex-
periment sessions (e.g., 30-min tasks; Veksler and Gunzel-
mann, 2018). These methods successfully simulate the ef-
fects of fatigue on a few brief vigilance tasks, such as the PVT
and the Mackworth Clock Task (Mackworth, 1948); however,
it is unclear whether these methods can account for vigilance
decrements in other related tasks.

In this paper, we describe a computational account of per-
formance on two vigilance tasks in which participants are
asked to view stimuli comprised of pairs of vertical lines
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and respond when the stimuli meet certain criteria. Our pri-
mary goals were to a) examine differences in processing and
performance between successive and simultaneous discrim-
ination tasks, b) determine whether computational accounts
of fatigue provide a better fit to observed data compared to
baseline models, and c) examine differences in parameter es-
timates across tasks and individuals.

Accounts of Vigilance Decrements

Theoretical accounts of VA share the idea that attention mod-
ulates performance on vigilance tasks, but differ on the exact
mechanism. Underload accounts argue that vigilance decre-
ments stem from “drifts” of attention away from the task, mo-
tivated by the monotony of the task (e.g., Robertson et al.,
1997; Smallwood and Schooler, 2006). Overload accounts,
however, argue the opposite: The taxing nature of vigilance
tasks induces fatigue, resulting in “lapses” of attention that
negatively affect performance as a function of time-on-task
(c.f. Warm and Dember, 1998). Most computational accounts
of fatigue are inspired by overload hypotheses of VA and treat
alertness as a resource that is exhausted with fatigue and re-
plenished with rest (Gunzelmann et al., 2009a). Specifically,
performance on simple vigilance tasks, such as the PVT, has
been conceptualized as a balance between fatigue and com-
pensation, where individuals offset decrements by changing
response behavior, such as lowering the requirements needed
to initiate a response. This performance is additionally af-
fected by small lapses in attention, termed microlapses, which
are positively related to fatigue and time-on-task (Gunzel-
mann et al., 2009b; Veksler and Gunzelmann, 2018).

Simultaneous vs. Successive Discrimination

An important topic in vigilance research is understanding
how fatigue affects the different cognitive processes that sup-
port task performance. This is especially true for the role of
working memory (WM) capacity, which has been shown to
be strongly correlated to lapses in vigilance (Unsworth et al.,
2010) and, more specifically, to PVT performance (Unsworth
et al., 2021). One method for understanding the link between
WM and vigilance is by contrasting performance on simul-
taneous versus successive discrimination tasks (Davies and
Parasuraman, 1982; Caggiano and Parasuraman, 2004). In si-
multaneous discrimination tasks, all of the information that
is needed to correctly classify a target item is included in the
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Figure 1: Examples of target trials during the lines task. In
the Simultaneous condition, targets were either pairs of lines
with different (A) or identical (B) lengths. In the Successive
condition, targets were either pairs of lines that were both
short (C) or both long (D).

trial. During successive discrimination tasks, however, the re-
sponse requirements are such that the stimuli presented dur-
ing a trial must be compared to a template of the target item
held in WM. The WM requirements of successive discrimi-
nation tasks make them particularly sensitive to the effects of
fatigue, where task performance declines more rapidly across
trials compared to performance in a comparable simultane-
ous discrimination task (See et al., 1995; although also see
Gartenberg et al., 2018).

The Current Study

We manipulated simultaneous vs. successive discrimination
in the current study using a task in which participants are
asked to view pairs of lines that are centrally-located on a
computer screen (Figure 1). During each trial, participants
were shown pairs of black vertical lines for 150 ms following
a variable interstimulus interval (between 1.3 and 1.7 sec).
The lengths of the two lines (either 14.6 or 18 mm) were ran-
domly chosen during each trial. In the Simultaneous condi-
tion, participants were asked to respond only when both lines
were the same length or different lengths. In the Successive
condition, participants were asked to respond only if both
lines matched and were of a particular size (short or long).
Here, template-matching is not needed in the Simultaneous
condition, as observers need only to determine differences be-
tween lines in order to provide a response. In the Successive
condition, however, a template of either two “short” or two
“long” lines is needed for a comparison. We modeled perfor-
mance in both of these tasks to better understand differences
in performance due to WM capacity and fatigue.

Methods
Behavioral

The models were based on data collected from 24 young adult
volunteers (Myge = 21.17, SD4e. = 2.23) recruited through
the University of Dayton Research Institute and surrounding
area. Participants were asked to complete two experiment

60

Description Bounds BM? Fixed?
v Initial utility value [0.0, o] Yes No
T Initial utility threshold [0.0, o] Yes No
A Microlapse penalty [0.98] No Yes
p Utility ToT penalty [-1.0,0.0] No No
K Threshold ToT penalty [-1.0, 0.0] No No
Y Conflict resolution time  [0.05] Yes Yes

Table 1: Parameters of the ACT-R lines models with indi-
cations as to whether they are a) included in the baseline
model (BM) and b) if they are fixed values or freely estimated.
“ToT” = “time-on-task™.

sessions lasting 2 hr each, where part of the study was to com-
plete the successive or simultaneous discrimination tasks on
separate days. We counterbalanced the order in which partic-
ipants completed these tasks to mitigate the influence of one
discrimination task over the other. The discrimination tasks
each consisted of 100 practice trials (which are excluded from
the statistical analyses reported in this paper) and 1,600 test
trials, and took approximately 45 min to complete. All par-
ticipants gave written informed consent in accordance with
the Declaration of Helsinki and were compensated for their
participation.

Computational

We developed the model using the Adaptive Control of
Thought-Rational, or ACT-R (Anderson et al., 2004), cogni-
tive architecture, with inspiration from previous models of the
PVT (Gunzelmann et al., 2009b; Walsh et al., 2017; Veksler
and Gunzelmann, 2018). ACT-R models behavior as emerg-
ing from a series of if/then rules that govern which actions (or
“productions”) are selected in a given situation, which itself is
governed by a central cognitive system. The productions that
are selected are a function of a) the amount of activation and
noise for any given production (i.e., utility values) and b) the
minimum activation required for a production to be selected
(i.e., utility threshold). The strength of any given production
can change as a function of baseline activation, the number of
times a production is selected, and the match between the out-
side environment and production specifications. Here, utility
values and thresholds will be determined by parameters re-
lated to fatigue. Table 1 briefly lists the critical parameters
we use in our models, descriptions of the parameters, and the
specific simulations that they are included in.

For the tasks in the current study, the production rules can
be divided into four stages for any given trial:

¢ Pre-attentive: Prior to stimulus onset (i.e., lines appearing
on the screen), participants must withhold a response as
they anticipate a signal. Here, the model selects the Wait
production to fire continuously until another production is
selected, such as when lines appear on the screen. Under
conditions of fatigue, however, the model may select and
fire the Respond production, even in the absence of a valid
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stimulus. This simulates false start responses when no lines
are presented on the screen.

* Attentive: Immediately upon detecting a visual stimulus,
the model will fire the Attend production, which represents
the relatively automatic process of attending to and har-
vesting information about a visual cue. Similar to the pre-
attentive stage, the model can erroneously choose the Re-
spond production immediately after the Afend production,
which simulates false start responses that are quicker than
conscious processing.

* Decision: After moving attention to a visual cue, partici-
pants must decide whether the stimulus meets the response
criteria (Match production) or not (Mismatch production).
For the simultaneous discrimination task, the model is able
to make this determination using only the stimuli presented
on the screen. For the successive discrimination task, how-
ever, the model is required to compare test stimuli to a tem-
plate held in WM, which requires more time and effort, i.e.,
about 50 ms extra. In either case, if the Match production
is selected, then participants prepare to give a keyboard re-
sponse; otherwise, the model will select the Wait produc-
tion in anticipation of the next trial. Incorrect responses,
which increase under conditions of fatigue, occur when a)
the Mismatch production is selected given a target stimu-
lus (“Miss”) and b) when the Match production is selected
given a non-target stimulus (“False Alarm”).

* Response: When the model has decided to respond, it fires
the Respond production, which simulates the physical act
of pressing the “j” key on a keyboard. Consistent with
Fitt’s Law (Fitts, 1954), the model takes approximately
300 ms to execute the movement at the beginning of the
experiment and becomes quicker as a function of practice

throughout the task.

Additionally, the model can fire the Microlapse production,
which is a brief interruption in model processing (50 ms).
Microlapses occur when there are no productions with acti-
vations that exceed the production selection threshold and in-
crease as a function of fatigue, simulating lapses in VA during
continuous response tasks (Gunzelmann et al., 2009b).

In our full model, fatigue penalizes both the utility values
(U) of these target productions and the threshold of the selec-
tion mechanism that controls which production is executed
(UT). Specifically, utility values at a given time ¢ are a func-
tion of both time-on-task and occurrence of microlapses, such
that:

U(r) = v x AV x (141)P], (1)
where v is the initial utility value, A is a penalty for micro-
lapses, N, is the number of microlapses that have occurred
in a given cycle, p is a time-on-task penalty specific to utility
values, and 7 is the amount of time (in minutes) spent in the
task.
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Model Cond | v T P K 2LL

Baseline  SiM- | 117 056 - - 1546.88
Succ. | 1.90 035 - - 2016.71

Fatigue Sim. | 143 0.81 -0.18 -0.21 | 1374.88
Succ. | 2.03 1.02 -0.24 -0.20 | 1497.86

Table 2: Best-fitting parameters and associated fit for models
fit to all data.

The production selection threshold is affected much in the
same way; however, only time-on-task, and not the occur-
rence of microlapses, has a direct effect on 1:

2

where 7T is the initial utility threshold value, ¥ is the time-
on-task penalty specific to the utility threshold and, 7 is the
amount of time spent on the task (scaled to minutes).

We fit the observed experiment data from both tasks to two
models: One without fatigue moderators (“Baseline Model”)
and one with fatigue moderators (“Fatigue Model”). In both
models, we freely estimated the starting utility values (v) and
utility thresholds (t). In the Fatigue Model, we additionally
estimated the time-on-task penalties for utility values (p) and
the utility threshold (k). We fixed the conflict resolution time
(y) and microlapse penalty (A) parameters to 50 ms and 0.98,
respectively!, although only 7 is present in both Baseline and
Fatigue models. The models were fit using maximum likeli-
hood estimation and approximate Bayesian computation with
differential evolution (Turner and Sederberg, 2012) against
the joint log-likelihoods of the observed vs. simulated reac-
tion times (RTs) (log-normal distribution), hit rates (Binomial
distribution), and false alarm rates (Binomial distribution).
All models were developed using the Julia language (Bezan-
son et al., 2017) and fit using the Optim. j1 (Mogensen and
Riseth, 2018) and DifferentialEvolutionMCMC. j1 (2022)
packages.

UT(t) =t x (1+1)%,

Results

Here, we present only a few analyses regarding the behav-
ioral data before discussing model fit indices. The results of
the experiment are described in more detail elsewhere (c.f.
Morris et al., 2022).

Behavioral

We conducted a 2 (Condition: Simultaneous [Sim] vs. Suc-
cessive [Succ]) x 4 (Block: 4 blocks of 400 trials) within-
subjects ANOVA, with Greenhouse-Geisser corrections on
degrees of freedom where assumptions of sphericity were
violated. For RTs, there was only a main effect of Block,
F(1.56,31.13) = 6.95, p < 0.05, reflecting a significant in-
crease between Block 1, M = 0.58, SE = 0.02, and Block 2,

'We did not freely estimate these values because these values
have strong precedence in the extant literature (c.f. Veksler and Gun-
zelmann, 2018) and because early simulations indicated that model
fit was not affected by these parameters.
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Cond. | v T P Kk | -2LL

Sim. 363 174 021 -0.20 | 1525.61
(0.40) (0.31) (0.02) (0.02) | (95.81)

Suce. | 362 153 -023 020 | 1580.08
(0.38)  (0.39) (0.02) (0.01) | (103.00)

Table 3: Means and standard errors of the mean (in parenthe-
ses) of the best-fitting parameters and associated fit for indi-
vidual participants.

M =0.63, SE =0.02, p < 0.05. RTs in Block 3, M = 0.64,
SE =0.02, and 4, M = 0.63, SE = 0.02, did not significantly
differ from each other, ps < 0.05. A similar pattern emerged
for accuracy, where there was also a main effect of Block,
F(1.59,31.73) = 3.83, p = 0.02. A partial interaction contrast
indicates that accuracy was significantly higher for Block 1,
M =091, SE =0.01, compared to all other blocks, Ms =0.89,
SEs=0.01,%%(1) = 6473.10. p < 0.05. There were no signif-
icant main effects of Condition, nor were there any significant
interactions between Condition and Block, ps > 0.05.

Computational

We first fit the aggregated experiment data to the separate
Baseline and Fatigue models. For both experiment con-
ditions, the models with fatigue penalties (Sim: -2LL =
1374.88, BIC = 1417.27; Succ: -2LL = 1497.86, BIC =
1540.25) fit the observed data better than the Baseline mod-
els (Sim: -2LL = 1546.88, BIC = 1568.07; Succ: -2LL =
2016.71, BIC = 2037.90). Table 2 lists the separate parame-
ters that were recovered from this process.

Given the better fit, we also estimated model parameters
separately for each participant, but only using the Fatigue
model of task performance (Table 3). For both the Simultane-
ous and Successive conditions (Figure 3), the estimated initial
utility values varied greatly across participants (Mg, = 3.63,
SEgim = 0.40, Msycc = 3.62, SEsucc = 0.38), while the cor-
responding initial utility thresholds were lower and were less
varied (M, = 1.74, SEg;, = 0.31, Msucce = 1.53, SEsucc =
0.39). Interestingly, estimates for both the utility value (M,
-0.21, SES]m = 002, Msucc = -0.23, SESUCC = 002) and
utility threshold (Mg, = -0.20, SEgj, = 0.02, Msycc = -
0.20, SEsucc = 0.01) time-on-task penalty parameters were
similar and exhibited little variation. These estimates did not
differ significantly between the two experiment conditions,
ps > 0.05.

As expected, the initial utility value and threshold esti-
mates were correlated, r = 0.77, t(43) = 8.01, p < 0.05,
reflecting the need for productions to exceed the selection
threshold. Initial utility values were significantly correlated
with utility time-on-task, r = -0.42, #(43) = -3.03, p < 0.05,
and threshold time-on-task, r = 0.40, #1(43) = 2.84, p < 0.05,
parameter estimates. Similarly, the initial threshold values
were also significantly correlated with utility time-on-task, r
-0.70, ¢t(43) = -6.34, p < 0.05, and threshold time-on-task,
r=0.32, 1(43) = 2.19, p < 0.05, parameter estimates. The
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Figure 2: Parameter estimates across participants for the
initial utility and threshold values (a) as well as the utility
and threshold time-on-task penalties (b) for the Simultaneous
condition.
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Figure 3: Parameter estimates across participants for the ini-
tial utility and threshold values (a) as well as the utility and
threshold time-on-task penalties (b) for the Successive condi-
tion.

two time-on-task parameters were not significantly related to
each other, r = 0.02, 1(43) = 0.10, p = 0.92.

Conclusions

These simulations support previous computational accounts
of fatigue mechanisms (e.g., Gunzelmann et al., 2009b, 2015)
and suggest that accounting for the effects of fatigue in a brief
vigilance task provides a better fit to observed experiment
data compared to models that do not account for fatigue, re-
gardless of the WM requirements in the experiment task, i.e.,
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Simultaneous vs. Successive conditions. They also suggest
that penalties to both production utility values and produc-
tion selection thresholds as a function of duration (Veksler
and Gunzelmann, 2018) provide an accurate account of the
decreases in response accuracy and increases in RTs in ACT-
R models of the discrimination vigilance tasks. The param-
eters recovered from model-fitting indicate that while there
are individual differences in factors related to general model
performance, i.e., initial production utility values and produc-
tion selection thresholds, this is not the case for parameters
that describe decrements as a function of time-on-task, where
all estimates for both the utility value and threshold penalty
parameters showed little variation from -0.2.

The lack of differences between the two conditions in both
behavioral and computational analyses contradict a resource-
depletion hypothesis of vigilance decrements (Caggiano and
Parasuraman, 2004), where the additional WM requirements
of the Successive lines task were expected to result in greater
decreases in performance. The results are consistent, how-
ever, with a general resource-control theory of vigilance
(Thomson et al., 2015), where greater decreases in vigilance
are expected for tasks that are more difficult, but not for those
that increase task engagement. In this particular task, re-
quiring participants to hold a template of the target stimuli
configured in WM might not have been sufficiently taxing
in order to replicate the results of previous simultaneous/suc-
cessive research (Parasuraman and Mouloua, 1987; Caggiano
and Parasuraman, 2004). Alternatively, the Successive condi-
tion might have been sufficiently taxing, but also engaging
enough to offset average differences in performance. An-
other possibility is that the stimuli used in the task (based on
Parasuraman and Mouloua, 1987) were more taxing than pre-
vious speeded discrimination tasks, resulting in similar per-
formance outcomes in both tasks. Regardless, the improve-
ment in fit between the Baseline and Fatigue models impli-
cates a performance decrement due to time-on-task, consis-
tent with both theoretical and computational accounts of vig-
ilance. Overall, these models extend previous accounts of
fatigue and highlight the importance of accounting for decre-
ments in brief vigilance tasks.
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Abstract

How might we use cognitive modeling to consider the ways in
which antiblackness, and racism more broadly, impact the
design and development of Al systems? We provide a
discussion and an example towards an answer to this question.
We use the ACT-R/® cognitive architecture and an existing
knowledge graph system, ConceptNet, to consider this
question not only from a cognitive and sociocultural
perspective, but also from a physiological perspective. In
addition to using a cognitive modeling as a means to explore
how antiblackness may manifest in the design and
development of Al systems (particularly from a software
engineering perspective), we also introduce connections
between antiblackness, the Human, and computational
cognitive modeling. We argue that the typical eschewing of
sociocultural processes and knowledge structures in cognitive
architectures and cognitive modeling implicitly furthers a
colorblind approach to cognitive modeling and hides
sociocultural context that is always present in human behavior
and affects cognitive processes.

Keywords: ACT-R; Concepnet; ACT-R/®; software
engineering;  sociogeny;  sociogenic  principle;
antiblackness; Al

Introduction

How might we use cognitive modeling to consider the ways
in which antiblackness', and racism more broadly, impact the
design and development of Al systems? There has been a
recent surge in scholarship approaching topics such as
fairness, ethics, and equity in Al systems (e.g., see A1, Ethics,
and Society or Fairness, Accountability, and Transparency,
two conferences that were formed in recent years and focus
on those topics.) Approaches in this space tend to focus on
fairness and equity in the Al system itself, with solutions that
detail ways to modify or test the Al system for forms of
fairness (see Leben, 2020, for a discussion of fypes of
fairness).

However, the current literature mostly fails to adequately
consider two other important pieces of the equation:

e  The person (or people) designing, developing,
and/or deploying the Al system in question
(especially from a cognitive process perspective)

e  Sociocultural structures and institutions that
mediate the way the Al system behaves and learns

! Here, antiblackness refers to anti-Black racism. For more on
connections between Al systems and antiblackness (albeit from a
perspective sans cognitive-modeling), see Dancy and Saucier (2022)
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within an environment. These same structures and
institutions also mediate the individuals behind
those systems.

When thinking about sociocultural systems and structures,
we are pointing particularly to representations of the Human
(Wynter, 2003; Wynter & McKittrick, 2015). Wynter (2003)
traces how representations of the Human (that is, who is
considered human and who is considered other-than human
or human-Other) and how the dominant (socioculturally
defined) modes of hierarchy that help define the Human have
changed throughout recent history. Thinking in-terms of
design and development, knowledge structures and
representations used to design, develop, and deploy systems
(and used by those systems to adapt or learn) exist within and
re-present sociocultural contexts that designate some as
Other.

Computational cognitive modeling offers an opportunity to
develop computational accounts of the processes that lead to
the creation and deployment of Al systems and related
computational systems. Ritter (2019) makes a related point in
their discussion of applications of cognitive modeling to the
system design process. Though they particularly discuss the
potential use in a spiral system development process (Pew &
Mavor, 2007), the points generally apply to other
development processes, especially those one might use in
developing software (e.g., the Spiral model), often used to
develop and deploy Al systems.

Beyond the typical cognitive models discussed by Ritter
(2019), using computational cognitive modeling that includes
physiological processes (e.g., Dancy, 2021) and those that
include considerations of social processes (e.g., Orr et al.,
2019) gives the representational space to consider,
quantitatively and qualitatively, how social, cognitive, and
physiological processes interact. The ability to understand the
realistic interaction between these systems and their effect on
behavior becomes especially important for questions related
fairness, justice, and equity in the design, development, and
deployment of Al systems (see Dancy & Saucier, 2022 for a
related discussion of some of these questions that one should
consider).

Orr et al. (2019) argues that cognitive architectures (and
other systems in the “cognitive levels of scale”) should be
leveraged in concert with conceptual structures (and
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dynamics) at the “social level of scale” to develop more
complete simulations of human behavior with greater
resolution. This paradigm of behavioral simulation, which
they call the “Reciprocal Constraints Paradigm” (Orr et al.,
2019), calls for cognitive agents to simulate social systems
and abstract neurophysiology (upward constraints). The
social systems should then constrain cognitive agents, while
those cognitive agents constrain the interpretation of
neurophysiological behavior (downward constraints).

Though this work differs in the representations that
characterize the upward and downward constraints, there are
similarities in recognizing the importance of physiological
and social considerations in cognitive and behavioral
processes. That is, despite the different time scales or bands
(Newell, 1990) these processes have reciprocal effects albeit
ones that differ depending on the scale of behavior. Given
that we focus on cognitive models in the development process
for this work, we focus the rational band of time through a
cognitive model lens. The work spans both the cognitive and
rational band in terms of generative model simulation (i.e.,
Ritter, 2019) considered here, but the representational space
of the work is one that touches all four of the biological,
cognitive, rational, and social.

We use the ACT-R/® hybrid cognitive architecture and the
ConceptNet knowledge graph to consider computational
representations that can be used to develop process models
that span these bands. In the next sections, we provide more
detail of these representations in rational and social bands that
we use so that a cognitive model can be used to understand
the effects of antiblackness on the design and development
process (with a focus on a particular software engineering
process). For more detail on the representations in the
biological and cognitive band see (Dancy, 2021) for an
understanding of the physio-affective and physio-cognitive
connections, and see (Anderson, 2007; Ritter et al., 2019) for
a more detailed look at the cognitive process representations.

Rational Band Representations

Thinking through the design and development of Al systems
at the rational band, is perhaps, the most natural fit for
inquiry that aligns with cognitive modeling within cognitive
architectures for the task of understanding. It is at this band
that we start to think about behavior from the perspective of
“knowledge-level” systems (e.g., see Newell, 1990 and also
Lieto et al., 2018), at behaviors that span minutes to hours.
Here, it is useful to use existing practices in design and
engineering (particularly software engineering) as a guide for
understanding the cognitive processes enacted within this
space of time. We use a Software Engineering framework
(Scrum, Schwaber & Sutherland, 2020) to think through the
knowledge potentially used during Al system design and
development. We also use work that connects processes from
Data collection and use, Al development, and Software
Engineering (Hutchinson et al., 2021) to move towards an
understanding of design and development at this level.

In thinking through the knowledge that is used and enacted
during the design and development of Al systems within the

66

rational band of behavior, it’s useful to consider the
engineering framework that might be used to organize the
development behavior and activities. Given the general
popularity of agile methodologies and particularly Scrum, we
use Scrum to think though behaviors within the scale of
minutes to hours. Though Scrum can be thought of from the
perspectives of social band as well, our considerations here
are the behaviors that span minutes to hours (e.g.,
development of the product backlog, related agile practices
such as the development of user-stories, or development of
the system itself).

Hutchinson et al. (2021) argue that datasets used in Al and
ML systems are a form of technical infrastructure and thus
are produced by “goal-driven engineering” processes. Their
discussion of Dataset development and curation as an
engineering process becomes particularly useful in
connecting their discussion of [Al and] ML datasets to
considering the cognitive processing of the developer(s).
Hutchinson et al. (2021) discuss datasets as forms of
engineering models that represent “facts about the world that
cannot be experienced directly, nor often replicated”. These
datasets are often collections of existing digital data, and thus
pulled from existing digital knowledge infrastructure. Thus,
one can think of these systems as providing a knowledge-
level representation (model) of the knowledge used by a
person to enact actions within rational (and cognitive) time-
scales; relatedly, see (Sparrow et al., 2011) for a discussion
on the increased importance of digital computational systems
for human knowledge use. Thus, the use of some of these
datasets can be extended beyond traditional AI/ML (e.g.,
Reinforcement learning, or Neural Network-based systems)
systems, to generative cognitive models built within
cognitive architectures and this may be warranted because
these datasets can be thought of as a model of the (extended)
knowledge systems used by humans to determine behavior,
especially within the rational band. Using these datasets as a
model of the knowledge used by designers and developers
during cognitive processing and behavior within the rational
band presents an opportunity to develop models that simulate
multi-scale (or in this case, multi-band) representations.
While we might use software engineering and design
cognition perspectives to develop the task-focused
procedural and declarative knowledge for a relevant
cognitive model, some datasets can provide a useful
engineering infrastructure for wider considerations of
sociocultural knowledge (e.g., those knowledge structures
that encode power structures and hierarchies) with those task-
oriented procedures and knowledge.

Social Band Representations

Understanding how existing social structures mediate
behavior at the individual level is important for
understanding contextualized behavior across time. In
addition to physical structures and the affordances those
structures may provide, it is also useful to consider the
knowledge structures that are more directly related to
behaviors in this band and how those may influence cognitive
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behavior, whether explicitly or implicitly. Given that such
knowledge structures can be learned in diffuse ways across
larger time-scales (indeed, knowledge and meaning taken
from that knowledge can span generations), it is important to
understand how this social (and cultural) knowledge might
influence behavior during Al design and development. One
can contend that a fundamental aspect of sociocultural
knowledge is who is and is not seen as a part of the Human
(Wynter & McKittrick, 2015) and as others have argued (e.g.,
Benjamin, 2019; Costanza-Chock, 2020; Noble, 2018) our
ability to recognize the humanity is important in the way we
design systems. The knowledge structures considered in
racist hierarchies that perpetuate antiblackness are best
thought of at the social band and time-scale because, though
the context may change as environments change, these power
structures and hierarchies represented in knowledge persist
across time and space (McKittrick, 2006; Wynter, 2003).

To explore design and development from this perspective,
large representations of digital knowledge (e.g., knowledge
graphs) and large models that encode concepts and relations
between concepts (e.g., word embeddings) can prove useful.
These models can be thought of not only as technical
infrastructure, but also as models of the world (as discussed
in the previous section). The interest in the exploration of bias
in these language/knowledge models, ultimately leading to a
direct comparison to knowledge communicated by people
(Caliskan et al., 2017), adds to the evidence that these models
may be useful as a model of world, especially social,
knowledge. Due to this primary concern of their connection
to knowledge at time-scales in the social band, we discuss a
particular model here. We use the ConceptNet knowledge
graph and API (Speer et al., 2017) towards this aim of using
an existing digital computational model of the world to
consider antiblackness in design and development of Al
systems. The open-source ConceptNet knowledge graph can
be used by Al systems to attach meanings to words. Though
the network itself is most robust in English and likely
transfers some biases from English to other languages, it is a
multilingual knowledge graph. The ConceptNet knowledge
graph combines knowledge from several sources including
crowd-sourcing, certain games, and some resources created
by experts.

The ConceptNet API contains an integrated system that is
a hybrid of several word embeddings and gives values of
(among other things) relatedness between terms. Similar to
previous work on connecting ACT-R to other sources of
knowledge outside of the traditional declarative memory
representation (e.g., Kelly et al., 2020; Salvucci, 2014), we
are proposing to think through and model using a system that
can represent declarative facts, but differs from the standard
declarative memory system in ACT-R; that is, to use this
model of the world to consider relations between concepts,
how they encode social systems of power (such as those
related to antiblackness), and how this might effect behavior
during the engineering process (i.e., as discussed in the
previous section).
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Considering Antiblackness in the Design and
Development Process

Though ConceptNet has been through processes of “de-
biasing” (Speer, 2017), this has not necessarily resulted in the
removal of representations of antiblackness if one audits the
system with a more critical lens (e.g., see Dancy & Saucier,
2022). This “de-biased” representation of antiblackness is
particularly interesting given that one can use the system to
compare effects on computational cognitive models across
versions (or perhaps, thinking from the human developer
perspective, we can look at before and after bias training.)
Thus, as also argued by Dancy and Saucier (2022), there
exists an opportunity to think beyond just representation and
bias by using this model of knowledge about the world and a
cognitive model built within a cognitive architecture. We can
begin to generate and better understand some ways that the
infra-human (and other related racist ideas and concepts) may
creep into decision-making. This is not to say that one can
solely use these tools to explore antiblackness in Al design
and development, but that they can serve as a complement to
existing  historical and sociocultural perspectives.
Computational cognitive models can be used to help explore
and probe the artifacts that digitize existing power structures
that have produced (and continue to produce) these racist
ideas, which are then consumed in a racist bootstrapping of
knowledge and action. We also should emphasize that even
if we are to move towards a potential process-based
explanation of antiblackness at the cognitive and rational
level, this does not relinquish the responsibility and agency
of individuals and the groups that individual agents form;
indeed, concepts such as ethical cognition (Bostrom &
Yudkowsky, 2014) and racial literacy (Daniels et al., 2019)
must remain an explicit goal even in the face of
understanding the mediating cognitive processes.

Interpreting relatedness in ConceptNet from a
cognitive and rational perspective using ACT-R

Dancy and Saucier (2022) details the ways in which, despite
debiasing processes, the system still shows problematic
relatedness calculations between racialized concepts and
particularly negative representations. As an example, when
looking at relatedness between concepts related to humanity
(or the lack of it) and racialized “man” (i.e., “black_man”,
“white_man”), the authors found “black man” to have a
higher relatedness to terms such as “savage”, “beast”, and
“inhuman”.  Racialized “woman” concepts (again,
“black_woman” and “white_woman”) are problematic, but
(somewhat expectedly) in a different way. While
“white_woman” shows almost an exact match in relatedness
as “woman”, thereby making “woman” and “white_woman”
interchangeable, “black woman” is absent from the system
(i.e., black woman is not a term in the whole
knowledge graph and so relatedness is determined solely by
a different algorithm than for the other concepts). As
discussed below, these representations are further
problematic when one considers the number of edges
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between racialized concepts and other concepts within the
knowledge graph.

From an ACT-R/Phi perspective, these differences in
ConceptNet term relatedness values (and indeed edges
between terms) are important when considering how a person
(or cognitive model) may act given different situations. The
relatedness can, essentially, be seen as an important
component in a calculation of association strength. In a
cognitive-process scenario (i.e., one which involves a typical
affective and physiological state), this type of relatedness
between terms may be important for Instance-based learning
Gonzalez et al., 2003, as well as prospective memory and
goal selection Altmann & Trafton, 2002, in decision-making
(and also see Thomson et al., 2015). Furthermore, when
combining these theoretical perspectives with more realistic
physiological and affective variability (e.g., making those
same decisions while sleep deprived or stressed), the effects
may be multiplied.

Instance-based learning theory describes a feedback loop
between retrieving declarative knowledge (instances) used to
make a decision and the outcome of that decision. The stage
of first recognizing the current situation is reliant upon using
declarative memory systems. Within ACT-R, this means that
the recognition of situations and the knowledge one uses in
those situations is guided by the declarative knowledge most
available, where the availability of knowledge concepts
(typically chunks) is defined by the activation of declarative
memory elements (see Anderson, 2007, pp. 91-134;
Anderson et al., 2004 for a further discussion of declarative
memory activation equations in ACT-R). Thus, a cognitive
agent will rely partially on availability of potentially
competing concepts to ultimately make a decision. Both the
subsymbolic role of declarative memory (i.e., being driven by
activation of a concept) and the symbolic role in making a
decision mean that we not only may implicitly retrieve
concepts related to human (or less-than human) capacities for
understanding how we treat a representation of black _man,
but also that we may explicitly use these concepts to justify
the decision to treat Black people as less-than (e.g., see
Fincher et al., 2018). Relatedly, the availability of declarative
memory (for our current example, the relatedness/similarity
that ultimately affects declarative memory activation) also
affects the choice of which goal to pursue (Altmann &
Trafton, 2002). The potential goals (and thus problem space
explored) by any cognitive agent will be limited by the
ontological space that defines their concepts. Being more
related to a brute, creature, or beast fundamentally changes
the knowledge available for action, as well as the knowledge
that will be used to justify and condone action; such
knowledge relations help maintain an anti-Black space.
Given that, similar to arguments made by Simon (1996) one
can think of designing Al systems as being reliant on a
designer and developer deciding the goal of the system, it’s
inner environment (including the technical infrastructure
used to train a system and define it’s state-action space), and
it’s outer environment (which the developer is often tasked
with modeling or finding a model for and can be related to
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the models used to train the inner environment), these
conceptual relations become problematic even before
considering a typical software engineering framework that
will help to organize and guide such development.

Though the relatedness for both man and woman are high
even for several of the less-than-human terms, this would
prove less important for availability in most cases. This
expectation stems from the fan effect (Anderson & Reder,
1999), which would signal that the large number of edges
connected to man and woman means that it would be less
potent in being used as a cue for other concepts and it is more
likely that the more specific category (e.g., black man)
would be applicable to many situations. Thus, the relatedness
of man is less material to black man and in the case where
black man is directly used as a concept, there is a stark
contrast between the relatedness values for the human terms
and the less-than-human terms. The equality between woman
and white woman (in terms of relatedness) only means that
the woman does not need to act as a cue to reach the same
conclusions (as it appears the edge relations are such that
woman has a heavy influence on the relatedness of
white woman). This discussion says nothing for
black woman, which must be extrapolated from other data as
the concept is not connected to any other concepts in
ConceptNet, not even woman; this signals the importance of
bringing in intersectional (Collins, 2015; Crenshaw, 1989)
analysis when understanding these systems.

These availability considerations from ConceptNet as a
world knowledge model are intensified when one considers
non-ideal physiological and affective states. Changes in
affect and stress lead to differences in both declarative and
procedural memory availability and selection (Dancy, 2021;
Schwabe & Wolf, 2013) and can facilitate the switch between
using more implicit memory strategies to guide decision-
making and action selection (Schwabe et al., 2009). Thus, the
implications of a less-than human ontological space are
worsened by the fact that we can switch to more implicit
memory strategies when under certain states, creating a
higher potential to use the biased conceptual knowledge
we’ve received from our environment. That is, any de-biasing
attempts we might see in the form of training related to
“diversity” or “equity”, the developers are likely to be
influenced by the dynamics of physiology and affect; most
notably for our current purposes, those dynamics associated
with stress. This becomes a practical issue for engineers and
designers of Al systems as they are not likely to create these
intelligent artifacts in a vacuum and under a perfect state, but
very realistically while experiencing normal life stressors.
Thus, without critically addressing these issues of anti-
Blackness constantly and explicitly, we ensure the
continuation of a cycle with a new justification.

Considering these results from the perspective of software
engineering (particularly a Scrum/agile process for our
purposes), we can think how this may affect the Scrum
artifacts created. If a member of the team is creating user-
stories (e.g., with the template of “As a <user>, | want <fo
perform something>, so that <[ can achieve some goal>"")
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Figure 1. Sociocultural structures influence the Scrum process both through effects on team members during sprints, and
through influence of peripheral development of the product backlog.

with these types of subsymbolic connections (not to say
anything for explicit symbolic connections), this will shape
the formation of these user stories. Typically, these user
stories will then be the artifacts that make-up the product
backlog, which is used to designate tasks within each sprint.
Thus, these artifacts, which play a big role in design and
development of a software (AI) system, will be heavily
influenced by the knowledge of the developer, who
themselves will have an internal memory/knowledge
environment that represents an existing (social-scale) system
of power and racial hierarchy. This is nothing to say of the
other parts of meetings (e.g., daily scrums and sprint
planning, reviews, and retrospectives) which themselves may
result in problematic changes in development. Fig. 1 gives a
high-level picture of how questions, choices, and artifacts
created during processes within the Scrum framework will
ultimately be will be mediated not by a cognitive system,
which itself is influenced by the existing knowledge and also
by stressors (partially mediated by physio-affective
processes) experienced during this information processing.

This problem is further complicated when considering that,
despite any de-biasing attempts we might see in the form of
training related to “diversity” or “equity”, the developers are
likely to be influenced by the dynamics of physiology and
affect; perhaps most notably for our current purposes, those
dynamics associated with stress.

“Look, a Negro” or Taking into Account the
Sociogenic Principle.

Fanon (2008), the source of the quote in the section title, in
discussing the experience of antiblackness in western
contexts, and how fundamental, partially social definitions of
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what it means to be Auman or other influence those placed in
either categories within western sociocultural contexts, coins
the term sociogeny. He puts forth this concept in addition to
phylogeny and ontogeny as an additional layer that
determines what it means to be human. Carrying this idea and
argument forward, Wynter (2001) adapts the term to
sociogenic principle. Wynter uses the sociogenic principle to
theorize hybrid “nature/culture” modes of being human;
Wynter and McKittrick (2015), and Wynter (2003), trace
more recent (western) dominant modes of the Human through
history. The sociogenic principle gives us an opportunity to
seriously consider how our definitions of the cognitive
architecture, or at least the treatment of architectures and
cognitive models, may or may not encode fundamental,
sociocultural specific aspects of human. As discussed by
Wynter (2001), sociocultural knowledge (that operates at the
timescales in the social-band) will have foundational effects
on behavior causing a “sociocultural situation” to activate a
“specific biochemical...correlate”. Critically to our use of
language-related models as digital models of the world,
Wynter (2001) also links the sociocultural mode of the
Human to language, particularly the “historico-raical
schemas” which are elaborated through a “thousand
anecdotes” (and also see a Dancy & Saucier, 2022 for a
related discussion relating Fanon’s treatment of sociogeny,
language, and computational models like ConceptNet).
Nonetheless, the consistent effects of dominant
sociocultural knowledge systems (especially those encoding
systems of power and oppression such as race) have largely
remained hidden and under explored, because cognitive
architectures and cognitive models have tended to focus on
behavior at the cognitive band of time (though simulating
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behaviors in the rational band) 2. Systems and Models that
encode world knowledge, such as ConceptNet, give another
opportunity to consider how pervasive connections between
what it means to be human and race may computationally
mediate behavior within the biological, cognitive, and
rational time bands. In some ways this perspective relates to
SGOMS (West & Pronovost, 2009), Orr et al. (2019), and
more generally Lieto et al. (2018), but we take aim
specifically at racializing hierarchies as a fundamental
organizing principle to the social world we operate within.
Thus, we are perhaps a level above those in that we are
thinking through how to fit (at least) one system of
oppression (which is foundational to the current Western
context that dominates, but is not exclusive to, the US) within
an existing cognitive architecture.

Conclusion and Future Work

Even with existing computational systems and models of
knowledge, there remains work to be done in connecting
these systems. In doing this, we seek to avoid multiple
models in the rational and social band that ultimately, do not
get us closer to understanding how sociocultural knowledge
and systems fundamentally organize behavior at lower bands.
Lieto et al. (2018) discusses this issue as something related to
criticism put forth by Newell (1973), but at the rational band.
Thus, in addition to the importance of grappling with our
socioculturally contextualized definition of the Human and of
the other [than human] as laid out by Wynter and McKittrick
(2015), there lies an importance in specifying the organizing
principles that we will use to develop computational models
that span multiple levels.

We plan to continue this work through strengthening
connections between ACT-R/® and ConceptNet, with an
exploration into better ways to combine the declarative
memory equations present in ACT-R, the existing
ConceptNet knowledge-graph, and the numberbatch system
integrated into the ConceptNet API (work such as Salvucci,
2014, is instructive towards this goal). We also plan to
explore related existing word embeddings to study how
different underlying technical infrastructure (i.e.,
Hutchinson et al., 2021) and methods for determining vectors
may affect models developed for the purposes of exploring
antiblackness in Al design and development. We also plan to
develop computational cognitive models that use world
knowledge (starting with ConceptNet) to make decisions
during software engineering processes.

Moving to sociocultural processes in models such as
ConceptNet, this work would benefit from a more fine-
grained analysis of race (i.e., beyond Black and white); using
theory posited by Bonilla-Silva (2015) may prove especially
useful here. It would also be beneficial to expand beyond race
to other sociocultural, power systems that intersect with race
such as gender. As discussed in section [Interpreting

2 This is nothing to say for the ways in which diffuse systems of
power and oppression are so foundational to sociocultural
knowledge and behavior that they affect not only the perpetual
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relatedness in ConceptNet from a cognitive and rational
perspective using ACT-R systems, we have explored some
intersections, but more work is needed.

While there has been work in understanding bias in the
development of Al systems, cognitive modeling with
cognitive architectures has yet to be used to develop a
computational process-level understanding of issues in that
area. What’s more specific focus of antiblackness in design
and development, which itself has a “historico-social”
context and is structural in ways we must understand, has
rarely been explored. Additionally, when social systems have
been approached in cognitive modeling, sociocultural
systems of power that play a part in our sociocultural
definition of the Human have been ignored, resulting in a
colorblind approach to modeling. Using cognitive
architectures in concert with existing knowledge (including
language) models presents a promising method in which to
computationally explore antiblackness in the development of
Al systems.
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Abstract

Argumentation is a widely studied topic in philosophy, psy-
chology, and Al In this paper, we are particularly interested in
its psychological implications. According to Mercier and Sper-
ber argumentation is the means for human reasoning. Here, we
will investigate how the context plays a role in the argumenta-
tion process and bridges to lower levels of cognition. For this
purpose the relevant knowledge within a given context deter-
mines the choice of the arguments by applying the spreading
activation theory of memory. Relevant knowledge can be fac-
tual, conditional or hypothetical and, when in conflict, might
have different strengths in relation to each other. We propose
three comparison mechanism for choosing the winning argu-
ment for a given position. Different than in computational ar-
gumentation, we are not interested in an exhaustive search for
arguments, but a guided process determined by the given con-
text. By using the cognitive architecture ACT-R we specify this
process through the spreading activation of chunks. Finally,
we implement two models of conditional reasoning within the
cognitive architecture ACT-R and evaluate them with the re-
sults of a famous reasoning task.

Introduction

Cognitive theories of reasoning investigate how humans rea-
son to understand, model, and eventually predict their de-
cisions. The adequacy of these theories is usually assessed
by comparing their predictions to the experimental results of
typical reasoning tasks (e.g., Byrne (1989), Wason (1968))
and by developing new experiments. Most of these reasoning
tasks are designed as follows: Given some (causal) informa-
tion, for instance in form of conditional sentences, such as “if
A, then B” together with a set of given premises, humans are
asked what can be concluded from this information.

According to Newell’s (1990) classification of human expe-
rience and information processing mechanisms into the four
bands of cognition, conditional reasoning might best be clas-
sified between the cognitive and rational bands. To facilitate
the different aspects of human behavior into various levels
(or bands) of cognition, Newell suggested the development
of cognitive architectures. This proposal implied that differ-
ent fields in the area of cognition need to link their work to
each other. Cognitive architectures provide a formal specifi-
cation of the structure of the brain, the functions of the mind,
and how the structure explains the function, guided by the
findings from decades of research. Within these cognitive ar-
chitectures, the cognitive processes are organized as modu-
lar entities coordinated within one environment thus simulat-
ing human cognition. Even though bridging the gap between
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Newell’s bands of cognition is still an open problem, the
developed cognitive architectures (e.g. ACT-R (Anderson,
2007), SOAR (Laird, 2012)) had a significant contribution
on providing formal methodologies.

In this paper, we will investigate conditional reasoning, where
we are mainly interested in three aspects: (i) how do humans
understand conditionals in the given context, (ii) how do they
infer new information from that context, and (iii) how can
(1) and (ii) be implemented such that they account for exist-
ing theoretical findings of lower levels of cognition. For ad-
dressing (i) and (ii), cognitive argumentation is chosen as the
theoretical foundation, where well-known cognitive phenom-
ena are formalized as cognitive principles and conclusions are
derived based on the dialectic argumentation process. Argu-
ments are usually understood symbolically. Yet, the process
of building and choosing them, and then deciding which ar-
gument wins seems to be heavily guided by biases or heuris-
tics, influenced by the given context, which might partially
be modeled statistically. By exploiting the probabilistic func-
tions in the cognitive architecture ACT-R (Anderson, 1990;
Anderson, Byrne, Douglass, Lebiere, & Qin, 2004), we im-
plement argumentation-based reasoning guided by chunk ac-
tivation.

Finally, two models of argumentation-based reasoning in
ACT-R will be presented and evaluated to data from the well-
known Byrne’s (1989) suppression task.

Related Work

Various (non-classical) logic-based approaches for condi-
tional reasoning have been proposed in the past (Braine,
1978; Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991;
Rips, 1994; Polk & Newell, 1995; Stenning & van Lambal-
gen, 2008; Dietz, Holldobler, & Ragni, 2012). However, only
a few of them (Braine, 1978; Rips, 1994; Johnson-Laird,
1983; Johnson-Laird & Byrne, 1991; Chater & Oaksford,
1999) proposed a theory on the (internal) reasoning process
itself. Up to now, only the (mental) model theory (Johnson-
Laird, 1983; Johnson-Laird & Byrne, 1991) and some rea-
soning tasks have been embedded into ACT-R (Khemlani &
Trafton, 2012; Ragni & Briissow, 2010; Ghosh, Meijering, &
Verbrugge, 2014).

Addressing the question of how humans integrate what is
known and what is conjectured or observed to what is in-
ferred to explain has been addressed by Weick (1995), who
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proposed the theory of Sensemaking. Sensemaking is about
the process to search for contexts that make sense.

Lebiere et al. (2013) proposed computational models that
specify how observed sensemaking behavior can be pro-
duced from elementary cognitive processes and modules.
Among other aspects, they considered the process of in-
formation gathering and hypothesis updating. The authors’
goal is to identify and understand the core mechanisms of
cognitive biases generally. A sensemaking model for in-
tuitive decision-making employing instance-based learning
has been proposed by Thomson, Lebiere, Anderson, and
Staszewski (2015). In the following section, we will briefly
point to similarities between argumentation and sensemaking.
A generally observed problem in the field of Cognitive Sci-
ence is that many ad-hoc formulations of domain-specific
models exist and therefore Thomson et al. (2015) suggest
driving the field of cognitive modeling to the generalizabil-
ity of models. Salvucci (2013) has addressed this aspect
by integrating models through cognitive skill acquisition. In
the PRIMs architecture, cognitive processes can be reused
such that they are applicable in many different combina-
tions (Taatgen, 2013). Serving a similar purpose for the case
of reasoning, in this paper we will introduce cognitive prin-
ciples, which are formalized task-independent assumptions
made by humans.

Cognitive Argumentation

Experiments by Mercier and Sperber (2011) have shown evi-
dence that humans arriving at and justifying claims seems to
be done through the construction of arguments. They state
that arguments are the means for human reasoning. With-
out expanding on the formal details, we will here briefly in-
troduce the theoretical foundation of our approach, Cogni-
tive Argumentation (Dietz Saldanha & Kakas, 2019; Dietz &
Kakas, 2020, 2021), where reasoning (or inference) is based
on a dialectic argumentation process. In Cognitive Argumen-
tation, argument construction is guided by cognitive prin-
ciples. These arguments are built from argument schemes,
which represent general links between information.

We will first introduce the relevant cognitive principles and
then illustrate the dialectic argumentation process by an ex-
ample.

Cognitive Principles

Cognitive principles are assumptions that humans make while
reasoning. The specification of such principles helps us to ex-
plain why humans come to certain conclusions in particular
when they diverge from valid conclusions in classical logic.
Furthermore, the notion of a cognitive principle allows us to
understand and distinguish between different types of reason-
ers.

The first two principles, maxim of quality and maxim of rel-
evance are motivated by Grice’s (1975) conversational impli-
cature. The maxim of quality states that, if there is no reason
to assume differently, humans believe that what they are told
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as factual information, is true (A"). The maxim of rele-
vance states that humans believe what they are told is rele-
vant (Ayy,). This maxim applies when humans perform some
hypothesis generation to infer consequences, not based on
facts, but based on what hypothetically could be true or false.
The principles of necessary (~>) and sufficient conditions
(vs»), are motivated by Byrne, Espino, and Santamaria (1999)
and Byrne (2005): Consider the conditionals If she meets a
friend, then she will go to a play and If she has enough money,
then she will go to a play. In the first conditional, she meets
a friend is sufficient support for she will go to a play. This
is a sufficient condition. For the second conditional, she has
enough money can be understood as a necessary condition,
i.e. the negation, she does not have enough money is plausi-
ble support for the negation of the conclusion, she will not go
to the play. Together with the cognitive principle of hypothe-
sis generation, the hypothesis that she does not have enough
money functions as a disabling condition to the modus po-
nens conclusion that she will go to a play. Similarly, given
that If she has free tickets, then she will go to the play, the hy-
pothesis of the sufficient condition she has free tickets func-
tions as an alternative condition and discards the condition
she has enough money as necessary for the conclusion she
will go to the play. This classification of necessary and suffi-
cient conditions is dynamic and strongly depends on the con-
text.

Different from valid inferences in classical logic, humans
have the ability to reason from observations to explanations,
which is sometimes called abduction. Abductive reasoning
is motivated by the maxim of inference to the best expla-
nation (Peirce, 1903). Additionally, the plausibility of ex-
planations increases or decreases by setting them in contrast
to the alternative explanations. So might the support for one
explanation discount the support for the alternative explana-
tions (Kelley, 1973; Sloman, 1994).

If contradictory information is given, and if there is no ob-
vious information that can be discarded, then, according
to Wason (1964), humans might reconsider the given infor-
mation, and a valid inference from some arbitrary or general
assumption will be given up in favor of a fact (Johnson-Laird,
Girotto, & Legrenzi, 2004). This observation will be called
the conflicts in reasoning principle and motivates the follow-
ing relative strength relation among the cognitive principles:
hypotheses (Ayy,) are the weakest, whereas facts (Na<ty are
the strongest. Derivations from necessary conditions (~~) are
stronger than derivations from sufficient conditions (~).

Dialectic Argumentation Process

We informally introduce the dialectic argumentation pro-
cess (Baroni, Gabbay, Giacomin, & van der Torre, 2018):
Step 1. Construct a root argument supporting the conclu-
sion of interest, Step 2. Consider a counter-argument, Step 3.
Find a defense argument, Step 4. Check if the defense argu-
ment is not in conflict with the root argument (in Step 1), Step
5. Add the defense argument to the root argument, Repeat
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Figure 1: The dialectic argumentation process is guided by cognitive principles. Acceptable arguments are in green and

non-acceptable arguments in red. 1 shows attacks and/or weak defenses and 1) show strong attacks and/ or defenses.

from Step 2. This process is repeated until no other counter-
arguments (step 2) can be found. The extended root argu-
ment is then the acceptable argument supporting the conclu-
sion of interest. Informally, conclusions follow credulously
when they are supported by acceptable arguments. They fol-
low skeptically when they are acceptable and there are no ac-
ceptable counter-arguments.

The intuition of this process will now be illustrated with the
help of the previously introduced examples and Figure 1:
Given If she meets a friend (f), then she will go to a play
(p), assume that the condition is both sufficient (f o8 p) and
necessary (f VS P). Further, assume that we are given the fac-
tual information that She meets a friend (Figure 1, left). Let
us start with the position that She will go to a play: 1. We
build the (strong) argument A; S for p, from the fact that f

and that f is a sufficient condition for p (1, p). 2. We build the

counter argument A7 75 from the hypothesis that She does

not meet a friend (f) and that f is (also) a necessary condi-
tion for p. 3.-4. However, A/ is a defense argument against

A? Flp > A f is a (strong) fact. 5. The new argument for

p stays A; s as f is already part of the root argument. The
~p

only counter-argument left is f against which A/ is trivially
a strong defense (repeat). Finally, the root argument A? ) is
an acceptable argument for the conclusion p.

Next, let us consider the arguments for p, which can only be
built from the hypothesis p, Ap, or Afjl’»ﬁ (1, p). Aj: S and
and A- - » _ cannot

Sof ~p
defend against. There is no acceptable argument for p, thus p

is a skeptical conclusion.

A/ are (strong) attacks against which Ay

Let us consider the argumentation processes when we addi-
tionally receive the information that If she has enough money
(m), she will go to a play (p), where she has enough money
is a necessary condition for she will go to the play (m 5 p).
(Figure 1, right): 1. Starting with, (1, p) A; 5 is a strong
argument for p. 2. The attack Am,m&ﬁ is built flr)om the new

conditional m ~~ p and the hypothesis that she does not have
enough money 3.-4. which can be defended against with the
hypothesis that She has enough money (A,,). 5. This defense
argument is added to the root argument, and defends against

75

all its attacks (A; s UAy,): This is an acceptable argument
~p

for p.

Consider now the process for the opposing position: 1. The

(strong) argument for pis A_ . 2. A s attacksA__n_,
171, 771~~ Fp 7,7~ D

however 3.-4. A_ _ » _ can defend itself against A . ,asnec-
m,m~~=p f-> P

essary conditions (777 ~» p) are stronger than sufficient condi-
tions (f ~ p). Amml‘»ﬁ is also an acceptable argument for p:
Both p and p are credulous conclusions.

Sensemaking We can draw parallels between the theory of
sensemaking (Klein, Moon, & Hoffman, 2006) and the argu-
mentation process, where sensemaking models can be anal-
ogously understood as arguments considering the description
given by Klein, Phillips, Rall, and Peluso (2007)[115]. Ini-
tially, humans generate just-in-time mental models (i.e. local
cause-effect connections) to explain events (Step 1). They
then elaborate and question that model with inconsistencies
(Step 2), fixate on the initial model, eventually discover in-
adequacies and compare alternative(s) (Step 3), reframe the
initial model, and (if applicable) replace the model with an-
other one (Step 4 and 5).

Guided Argumentation Process

It does not seem plausible, that humans rigorously follow
such a step-wise procedure as described above but it is more
likely that they are guided by some heuristics, which might
depend on e.g. their simplicity, their strength, and their rel-
evance in the context. In the following, we address this as-
pect by realizing a guided dialectic argumentation process in
ACT-R.

Argumentation in ACT-R

Two ACT-R models based on the theory of Cognitive Argu-
mentation are presented in this section. The structure of both
models is shown in Figure 2.

Tasks

The proposed models implement three tasks, read, argue and
respond, where the last two is each specified with one control
state. Model I follows sequentially the tasks, whereas the
read and argue tasks in model II are intertwined.
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Figure 2: Model I (left) and model II (right), where each (yellow) block in the middle (between the imaginal buffer and the
declarative memory) represents a production rule. The background colors in the models correspond to the ACT-R modules on

the right to top of the right model.

Background Knowledge

Model I (Figure 2, left) stores the conditions as either nec-
essary or sufficient in the declarative memory whereas in
model IT (Figure 2, right) this information is derived from the
production rules. This classification determines which argu-
ments are going to be considered relevant in the argue task.

Model I The production rules activate fact and
activate sentence contain the following structure:

=imaginal> =imaginal>
fact =fact sentence =sentence
==> ==>

t+retrieval> +retrieval>
word =fact word =sentence

A chunk will be retrieved having a slot context contain-
ing either the chunk SUFFICIENT or NECESSARY. Figure 2,
left, DECLARATIVE, gives two examples of such chunks
(TEXT-SUF or TEXT-NEC). In the next step, this SUFFICIENT
or NECESSARY chunk is placed in the imaginal buffer (Fig-
ure 2, left, IMAGINAL). This activation spreads to the chunk
arguments (e.g. ARG-1 or ARG-2) which either contain the
chunk SUFFICIENT or NECESSARY in their context slot.

Model I The read production rules in Figure 2, right, (e.g.
read fact) all contain either the elements on the left or on the
right:

=visual> =visual>
value value
==> ==>
tretrieval> tretrieval>
value NECESSARY value SUFFICIENT
where ... is a placeholder for a string value that is different

for each production rule (e.g. “She will meet a friend”). After
reading, the model interprets (or contextualizes) the sentence:
Depending on which production rule matches and fires, a con-
text chunk where either value NECESSARY or SUFFICIENT is
retrieved and this retrieved chunk, either NEC or SUF (Figure 2,
right, DECLARATIVE), is placed in the imaginal buffer. Af-
ter that, the respective hypothesis chunk (either with value
DISABLER or ALTERNATIVE) is retrieved and placed into the
imaginal buffer.

Argumentation Task

The argue task can only start after the models have accom-
plished the read task (or at least once for model II).

Arguments as Chunks The chunks of type argument con-
tains the slots fact, hypo and context which contain other
chunks, respectively. Additionally, arguments contain the
slots pos and neg-pos having string values, representing the
position and the opposite position, and the slot str having a
float value, denoting the argument’s strength. Consider two
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strong arguments from the example in the previous section:

(argl isa argument hypo NONE fact FRIEND
pos "YES" context SUF neg-pos "UNKNOWN" str 1)

(arg2 isa argument hypo DISABLER fact FRIEND
pos "UNKNOWN" context NEC neg-pos "YES" str 1)

argl represents the modus ponens argument, stating that She
will meet a friend (fact FRIEND), together with the condi-
tional being understood as sufficient (context SUF), being
an argument for She will go to play (pos "YES"). arg2 rep-
resents the attacking argument including the final position:
stating that, a disabling hypothesis (hypo DISABLER, e.g. She
does not have enough money) and the conditional understood
as necessary (context NEC), forms an argument for the po-
sition She will not go to a play. argl and arg2 are equally
strong (str 1). As slot hypo in arg2 has a disabling hypoth-
esis (DISABLER), it defends against argl, and makes both
arguments acceptable (thus we cannot conclude skeptically
that She will go to the play and therefore the position is pos
"UNKOWN).

Variations in Argumentation Process Humans differ in
reasoning (c.f., (Khemlani & Johnson-Laird, 2016)): Some
draw conclusions already based on one argument that sup-
ports a position, whereas others try to generate hypotheses
to build (strong) counter arguments. The dialectic argumen-
tation processes in model II (Figure 2, right) subsumes the
one in model I and is as follows: In case an argument was
successfully retrieved by search for argument, two pro-
duction rules might apply, either (1) Respond with the posi-
tion of that argument or (2) Search Counter argument. In
the second case, three production rules might apply: (2a)
there is a Retrieval Failure and the model Responds
with the position of the current argument, (2b) there is a
Retrieval Failure and the model Rereads the premises
(which will increase either the activation of NEC or SUF) or
(2c) Retrieval is Successful and both arguments are com-
pared. The arguments can be compared in either one of the
following ways: (2c,i) through their strengths (which argu-
ment is stronger?), (2c,ii) through their activation (which ar-
gument has the higher activation), or (2c,iii) based on their
hypothesis (which argument has a disabling or alternative hy-
pothesis?). Figure 2 only shows (2c,i), where depending on
whether argument 1 or argument 2 is stronger, either one of
the following production rules applies:

(p arg-l-stronger (p arg-2-stronger

=goal> =goal>
state arque state argue
=imaginal> =imaginal>
strength-1  =val strength-1  =val
< strength-2 =val > strength-2 =val
arg-1 =pos arg-2 =pos
==> ==>
=imaginal> =imaginal>
value  =pos value =pos
=goal> =goal>
state respond ) state respond )
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When the argument taking the disabling or alternative hy-
pothesis into account is chosen (2c,iii) then one of the fol-
lowing production rules applies:

(p arg-l-hypo (p arg-2-hypo

=goal> =goal>
state arqgue state arque
=imaginal> =imaginal>
- arg-1 nil - arg-1 nil
- arg-2 nil - arg-2 nil
arg-1  =pos arg-2  =pos
- hypo-1 None -hypo-2 None
==> ==>
=imaginal> =imaginal>
value  =pos value  =pos
=goal> =goal>
state respond ) state respond )

In the current implementation, model II includes all options,
except (2c,ii). Further, the utility to respond with the posi-
tion of the firstly retrieved argument (thus not searching for
a counter argument) is higher than for the other production
rules.

Evaluation

We first show how the models perform with respect to a cog-
nitive reasoning task and then discuss their results.'

Application: Byrne’s Suppression Task

The application of Cognitive Argumentation in ACT-R is
shown by means of a typical reasoning task. In the suppres-
sion task (Byrne, 1989) participants were asked whether they
could derive conclusions given variations of a set of premises.
The task consists of two parts, where in both parts, the condi-
tionals are the same, but the factual information changes.

PartI Group I was given the following two premises: If she
has an essay to finish, then she will study late in the library.
and She has an essay to finish. (essay) The participants were
asked what of the following answer possibilities follows as-
suming that the above premises were true: She will study late
in the library, She will not study late in the library or She may
or may not study late in the library. 96% of the participants
in this group concluded that She will study late in the library
(library). Group II of participants additionally received the
following premise: If she has a textbook to finish, then she
will study late in the library. which yield to the same result:
96% of the participants in this group concluded that She will
study late in the library. Group III of participants instead
additionally received the following premise: If the library is
open then she will study late in the library. In this case, only
38% concluded that She will study late in the library. If in-
stead She does not have an essay to finish was given as a fact,
only 4% of Group II concluded She will not study late in the
library, whereas for Group I and Group III, the percentage
was 46% and 63%, respectively.

IThe models can be found here:

https://github.com/eadietz/bst2actr
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Part I The second part of the experiment was similar, ex-
cept that the given facts were different. The participants were
given the fact that She will study late in the library (library)
or She will not study late in the library (not library) and asked
what of the following answer possibilities follows assuming
that the given premises were true: She has an essay to finish,
She does not have an essay to finish or She may or may not
have an essay to finish.

Fact Group Modell ModellI Byrne Dieussaert™
| 98 90 96 88
o 98 90 96 93
1T 52 37 38 60
~» concluded She will study late in the library
Modell Model I Byrne Dieussaert™
§‘ I 47 31 46 49
§ II 5 10 4 22
g I 73 65 63 49
~ concluded She will not study late in the library
ModelI Model I Byrne Dieussaert™
& 1 46 31 71 53
£ n 4 10 13 16
= I 72 64 54 55
~» concluded She has an essay to finish
ModelI ModelII Byrne Dieussaert™
g‘ I 95 90 92 69
§ 11 99 89 96 69
3 11 54 37 33 44

~+ concluded She does not have an essay to finish

Table 1: The percentages of model I and II after 100 simu-
lations compared to the experimental results by Byrne (1989)
and Dieussaert et al. (2000), abbreviated by Byrne and
Dieussaert™, respectively. The first two columns are the cases
and the groups. The highlighted rows show the suppression
effects.

Results The results in Table 1 show that both, model I and
model II account for the suppression effect in all four cases.
The results that diverge most from the experimental data, are
for cases II (essay) and III (not essay) for group I in model II.
Model I fits better the data than model II, however which of
the model’s underlying mechanisms are more plausible?

Discussion

Model I fits better the data than model II, but model II’s im-
plementation of background knowledge, divisions of tasks
and individual differences, might better account for the un-
derlying cognitive process. Through optimization via meta

78

parameters or the utility modules, an eventual perfect fit of
the models to the data seems feasible, however, maybe less
interesting.

Background knowledge In model I, background knowledge
is stored in the declarative memory (where chunks differ in
their base-level activation), whereas in model II, the knowl-
edge is in the production rules.

Division of Tasks Model I's tasks of read, argue and re-
spond are strictly ordered. This might be plausible for the
respond task, however the read and argue tasks seem inter-
twined, which makes model II more plausible: participants
might re-read the sentences while they argue for or against
some response.

Argument Selection Chunks that are retrieved last have a
higher activation than other chunks. Yet, for argumen-
tative reasoning the strength or the attacking character
(e.g. through disabling/ alternative hypotheses) might have
stronger effects.

Individual Differences Competing production rules in
model II represent the different individual’s responses.
Another modeling approach could have been the imple-
mentation of a set of models.

Learning Reasoning tasks usually do not consider learning,
even though this is a relevant aspect for which cognitive
architectures are well suited for.

Conclusions

This paper shows how cognitive argumentation can be im-
plemented into a cognitive architecture. In cognitive argu-
mentation, cognitive principles specify task-independent as-
sumptions humans might make while reasoning. A variation
of the original dialectic argumentation process is formalized
in ACT-R. Most importantly, an exhaustive search for argu-
ments is avoided, and instead, the argumentation process is
guided through chunk activation. Two argumentation-based
reasoning models are evaluated to the experimental results of
a famous reasoning task. The approach provides an ACT-R
implementation of two models that solves a (conditional) rea-
soning task through cognitive principles where reasoning is a
guided dialectic argumentation process. Still, a lot needs to
be done to refine this approach. The current implementation
takes the existence of arguments as granted and does not pro-
vide a mechanism of argument construction. Furthermore,
we need to consider other reasoning tasks such as tasks that
investigate learning. With the help of new experiments, we
could evaluate and refine the dialectic argumentation process
as currently implemented. Finally, the automation of the con-
ditions’ classification and the problem of prior knowledge is
still an open problem. Natural language processing and argu-
ment mining (Lawrence & Reed, 2020) might be helpful for
this purpose.



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

References

Anderson, J. R. (1990). The adaptive character of thought.
Psychology Press.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press.

Anderson, J. R., Byrne, M. D., Douglass, S., Lebiere, C., &
Qin, Y. (2004). An integrated theory of the mind. Psy.
Review, 111(4), 1036-1050.

Baroni, P, Gabbay, D., Giacomin, M., & van der Torre, L.
(2018). Handbook of formal argumentation. College Pub-
lications.

Braine, M. (1978). On the relation between the natural logic
of reasoning and standard logic. Psy. review, 85(1), 1-21.

Byrne, R. M. J. (1989). Suppressing valid inferences with
conditionals. J. of Memory and Language, 31, 61-83.

Byrne, R. M. J. (2005). The rational imagination: How
people create alternatives to reality. MIT press.

Byrne, R. M. J., Espino, O., & Santamaria, C. (1999). Coun-
terexamples and the suppression of inferences. J. of Mem-
ory and Language, 40(3), 347-373.

Chater, N., & Oaksford, M. (1999). The probability heuristics
model of syllogistic reasoning. Cognitive Psy., 38, 191-
258.

Dietz, E., & Kakas, A. (2021). Cognitive argumentation and
the selection task. In Proc. of the annual meeting of the
Cognitive Science Society, 43 (pp. 1588—1594). Cognitive
Science Society.

Dietz, E., & Kakas, A. C. (2020). Cognitive argumentation
and the suppression task. CoRR, abs/2002.10149.

Dietz, E.-A., Holldobler, S., & Ragni, M. (2012). A com-
putational logic approach to the suppression task. In
N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proc. of the
34th annual conference of the Cognitive Science Society
(COGSCI) (pp. 1500-1505). Cognitive Science Society.

Dietz Saldanha, E.-A., & Kakas, A. (2019). Cognitive argu-
mentation for human syllogistic reasoning. KI - Kiinstliche
Intelligenz, 33(3), 229-242.

Dieussaert, K., Schaeken, W., Schroyens, W., & D’ Ydewalle,
G. (2000). Strategies during complex conditional infer-
ences. Thinking & Reasoning, 6(2), 125-161.

Ghosh, S., Meijering, B., & Verbrugge, R. (2014). Strategic
reasoning: Building cognitive models from logical formu-
las. J. of Logic, Language and Information, 23(1), 1-29.

Grice, H. P. (1975). Logic and conversation. In P. Cole &
J. L. Morgan (Eds.), Syntax and semantics (Vol. 3). New
York: Academic Press.

Johnson-Laird, P. N., Girotto, V., & Legrenzi, P. (2004).
Reasoning from inconsistency to consistency. Psy. Review,
111(3), 640 - 661.

Johnson-Laird, P. N. (1983). Mental models: towards a cog-
nitive science of language, inference, and consciousness.
Cambridge, MA: Harvard University Press.

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction.
Hove, NJ: Lawrence Erlbaum Associates Ltd.

79

Kelley, H. (1973). The processes of causal attribution. Amer-
ican Psychologist, 28(2), 107-128.

Khemlani, S., & Johnson-Laird, P. N. (2016). How peo-
ple differ in syllogistic reasoning. 38th Conference of the
Cognitive Science Society.

Khemlani, S., & Trafton, J. G. (2012). mreactr: A com-
putational theory of deductive reasoning. In N. Miyake,
D. Peebles, & R. P. Cooper (Eds.), Proc. of the 34th annual
conference of the Cognitive Science Society (pp. 581-586).
Cognitive Science Society.

Klein, G., Moon, B., & Hoffman, R. R. (2006). Making
sense of sensemaking 2: A macrocognitive model. /[EEE
Intelligent Systems, 21(5), 88-92.

Klein, G., Phillips, J. K., Rall, E. L., & Peluso, D. A. (2007).
A data-frame theory of sensemaking. In R. R. Hoffman
(Ed.), Proc. of the sixth international conference on nat-
uralistic decision making (pp. 113-155). Lawrence Erl-
baum Associates Publishers.

Laird, J. E. (2012). The soar cognitive architecture. The MIT
Press.

Lawrence, J., & Reed, C. (2020, 01). Argument Mining: A
Survey. Computational Linguistics, 45(4), 765-818.

Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-
Taylor, M., Staszewski, J., & Anderson, J. R. (2013). A
functional model of sensemaking in a neurocognitive ar-
chitecture. Computational Intelligence and Neuroscience,
2013, 921695:1-921695:29.

Mercier, H., & Sperber, D. (2011). Why do humans reason?
arguments for an argumentative theory. Behavioral and
Brain Sciences, 34(2), 57-74.

Newell, A. (1990). Unified theories of cognition. USA:
Harvard University Press.

Peirce, C. S. (1903). Harvard Lectures on Pragmatism: Lec-
ture VII. MS [R] 315.

Polk, T. A., & Newell, A. (1995). Deduction as verbal rea-
soning. Psy. Review, 102, 533-566.

Ragni, T., M. Fangmeier, & Briissow, S. (2010). Deduc-
tive spatial reasoning: From neurological evidence to a
cognitive model. In G. Salvucci D. D. und Gunzelmann
(Ed.), Proc. of the 10th international conference on cog-
nitive modeling (pp. 193—198). Philadelphia, PA. Drexel
University.

Rips, L. J. (1994). The Psychology of Proof: Deductive Rea-
soning in Human Thinking. The MIT Press.

Salvucci, D. D. (2013). Integration and reuse in cognitive
skill acquisition. Cognitive Science, 37(5), 829-860.

Sloman, S. (1994). When explanations compete: the role of
explanatory coherence on judgements of likelihood. Cog-
nition, 52(1), 1 - 21.

Stenning, K., & van Lambalgen, M. (2008). Human reason-
ing and cognitive science. In Cambridge ma. MIT Press.

Taatgen, N. (2013, 06). The nature and transfer of cognitive
skills. Psy. review, 120, 439-471. doi: 10.1037/a0033138

Thomson, R., Lebiere, C., Anderson, J. R., & Staszewski,
J. (2015). A general instance-based learning framework



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

for studying intuitive decision-making in a cognitive ar-
chitecture. Applied Research in Memory and Cognition,
4(3), 180-190. (Modeling and Aiding Intuition in Organi-
zational Decision Making)

Wason, P. (1964). The effect of self-contradiction on falla-
cious reasoning. Quarterly J. of Exp. Psy., 16(1), 30-34.
Wason, P. (1968). Reasoning about a rule. Quarterly J. of

Exp. Psy., 20(3), 273-281.
Weick, K. (1995). Sensemaking in organizations. SAGE
Publications.

80



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

Modeling of Multi-Defender Collaboration in a Cyber-Security Scenario

Yinuo Du (yinuod @andrew.cmu.edu)
Carnegie Mellon University
Palvi Aggarwal (palvia@utep.edu)
The University of Texas at El Paso
Kuldeep Singh (palvia@utep.edu)
The University of Texas at El Paso
Cleotilde Gonzalez (palvia@utep.edu)
Carnegie Mellon University

Abstract

While evidence shows that cyber attackers are good at
coordinating and collaborating in their attacks, network
defenders are notoriously poor at sharing information and
collaborating among themselves. To help promote cooperation
among defenders, one requires models that can explain
and make predictions of emergent cooperation decisions of
each defender in a cyber security scenario. We propose a
Multi-Agent Instance-Based Learning (MDIBL-PD) cognitive
model based on Instance-based Learning (IBL) theory, and
founded on the Prisoner’s Dilemma (PD) of cooperation.
MDIBL-PD aims at explaining how collaborations emerge
to share information with other defenders in a group.
MDIBL-PD was created to interact in a Multi-Defender-Game
(MDG) that was used in an experimental study with human
participants, intended to determine the effect of different levels
of information sharing on collaboration. MDIBL-PD uses
an extension of the utility function in IBL theory to capture
the emergence of cooperation with higher levels of social
information. Through simulations with MDIBL-PD we collect
synthetic data to compare to the data set collected in human
studies. Our results help explain the emergence of cooperation
at increasing levels of information regarding others’ actions.
We demonstrate the ability of MDIBL-PD to predict human
cooperation decisions in the MDG in situations in which
players have only their own information and in situations in
which they have information about the sharing behavior of the
other players.

Keywords: Cognitive Modeling; Multi-agent; Cooperation;
Prisoners’ dilemma; Cyber-Security

Introduction

In cybersecurity a major problem is the collaboration and
coordination among defenders to share information on
their vulnerabilities and experienced attacks. Sharing this
information brings a major concern for companies and
organizations: their privacy and competitive advantage can
be damaged if other ill-intentioned people can take advantage
of such information for their own benefit. In other words,
organizations experience a social dilemma, in which there is
a benefit to sharing information, but also put privacy at risk.
Singh, Aggarwal, and Gonzalez (2021) studied this social
dilemma in cybersecurity using a Multi-Defender-Game
(MDG) in human experiments, to learn about the conditions
under which humans share information. MDG is a dynamic
game in which sharing information may influence their future
security and attack probability. Their experimental results
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demonstrated a decreasing trend of the average proportion
of group-level sharing. Human participants also tended to
share less after being attacked, suggesting that instead of
making sharing decisions solely based on reciprocity to their
groupmates, participants may also base their decisions on the
breach status, and might erroneously attribute the breach loss
to groupmates.

As suggested by the Hierarchy of Social Information (HST)
in Gonzalez and Martin (2011), an increase in cooperation
can be promoted by additional levels of information
regarding the other players’ actions and outcomes. Thus,
knowledge about others’ actions and outcomes might make
the associations of reciprocity more clear and direct.
The similarity of other’s predicament to one’s own can
help strengthen a sense of reciprocity and thus lead to
greater cooperation.  The HSI proposed an increased
level of social information from having no information
about the others to an increased level of descriptive social
information, where increased information about the complete
interaction structure may result in more effective promotion
of cooperation. Gonzalez and Martin (2011) argued that
ongoing visibility of the payoff matrix can assist in clarifying
the trade-off between short-term and long-term rewards. The
cognitive modeling work in (Gonzalez, Ben-Asher, Martin,
& Dutt, 2015) also suggests that humans tend to consider
the outcome of their opponent, dynamically weighted by their
interaction experience.

In cognitive science, most models focus on the individual
behaviors. Many models aim at studying the cognitive
processes of the attacker in order to inform the defense
strategies (e.g., masking Aggarwal, Thakoor, et al., 2022;
signaling Cranford et al, 2021; anti-phishing Singh,
Aggarwal, Rajivan, & Gonzalez, 2020). Other models
describe the recognition and comprehension processes of
an individual defender (Dutt, Ahn, & Gonzalez, 2011) or
the interaction between attacker and defender (Aggarwal,
Moisan, Gonzalez, & Dutt, 2022). However, there’s a lack
of cognitive modeling for groups of defenders in the context
of cybersecurity.

Mermoud, Keupp, Huguenin, Palmié, and Percia David



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

(2019) proposed a behavioral framework that theorizes the
association between human behavior and their frequency
and intensity to participate in security information sharing.
However, their analysis focused on the individuals rather
than the interaction among them. A recent review
by (Ask, Lugo, Knox, & Siitterlin, 2021) suggests
that research on cyber threat communication are mostly
interview-based exploratory studies and focused more on
individual-organization interaction and internal collaboration
(Ahrend, Jirotka, & Jones, 2016; Hamornik & Krasznay,

2017).
In what follows, we first describe the
Multi-Defender-Game (MDG) paradigm that reveals

the dynamics of defenders’ sharing tendency in groups
of three over the course of 50 trials. We then formalize a
cognitive model of a defender, built in SpeedyIBL (Gonzalez,
Lerch, & Lebiere, 2003; Nguyen, Phan, & Gonzalez, 2021).
Using the data set collected in a human experiment, we
demonstrate that cognitive models of defenders can be useful
for understanding the factors affecting the continuation and
break down of collaboration and how humans account for the
outcome of others.

Multi-Defender-Game (MDG)

We have developed a Multi-Defender-Game (MDG) for
data collection through human experiments. The MDG is
designed for group experiments. In the MDG there is a group
of defenders (human participants) that play an information
sharing game in a cyber-security scenario. The participants
are assigned in groups of three players, in which they will be
identified as defenders Defender 1, Defender 2, and Defender
3, each of them defending their own network. Initially,
each defender receive 1000 points as an endowment, which
can be used to invest in security to defend their network.
Each defender’s network is independent, some defenders may
be attacked when the others are not and each may have a
different chance of being attacked. Then defenders start the
game and play 50 trials of decision making on sharing/not
sharing information with other defender in the network. The
goal of each defender is to maximize their points in the game.

In each trial ¢, the defender’s network may or may not
get attacked determined by his Probability of Breach Pb'. If
the defenders’ network gets attacked, then it costs them —30
points (attack status C', = 1). They need to choose to share or
not to share information with other defenders in the network
about the attack/not attack. They will then receive feedback
information after the other two group members make their
decisions.

The cost of information sharing (—15 points) is deducted
from the available points if defenders choose to share
information with others. The defender (receiver) gets
rewarded (35 points) for receiving information from each
other defender. Collectively, the sharing interaction between
two defenders forms a prisoner’s dilemma (table.1). For
example, the payoff in the share-share cell is 20 = 35 — 15 for
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both the column player and the row player. Sharing points
Z} of defender i at trial 7 is the sum of receiving reward
and sharing cost with the other two defenders in their group.
The accumulated reward of player i at trial ¢ of defender i is
given by Eq.1. We assume the information shared is valuable
and it helps the receiver to strengthen their security, thus
information sharing also affects future probability of breach
by Eq.2.

Ri=R'4+Z +(-30)-C (1)
0.95-7!

Pyt =pp - 1 2

2000 @

Table 1: Payoff matrix

Defender 1 or Defender 2
Share | Not-Share
Defender 3 Share 20,20 -15,35
Not-Share | 35,-15 0,0

Human Dataset

As a baseline to compare the predictions of our IBL model,
we used a data set collected from human participants who
played together in groups using the MDG. This study
recruited a total of 210 participants (about 46% female) from
Amazon Mechanical Turk, to play a game in groups of 3
participants). On successful completion of the experiment,
all participants received a base payment of $3 and they could
earn up to $1.75 as additional bonuses based on the points
available at the end. The average time taken to complete the
experiment was 15 minutes.

The data set consists of two experimental conditions
defined based on the information given to the participants
regarding the sharing information of the other defenders
in their group. The information levels were: Own and
Others, where the Own condition provided only information
on the actions of the other defenders in the group; while the
Others condition also provided the outcomes of others and
their breach status. Participants received this information in
table 2 where the sharing decisions of each defender in the
group, including the protagonist defender, were displayed in a
separate column. The table also included their breach status,
when this information was shared by the other defenders in
the group. A total of 102 participants (34 groups) were in
the Own condition, and 108 participants (36 groups) in the
Others condition.

Instance-Based Learning Model of Defender’s
Collaborations

We propose an Instance-Based Learning (IBL) cognitive
model to make predictions about human sharing behavior
in the MDG, at different levels of information. The model,
Multi-Defender IBL - Prisoner’s dilemma (MDIBL-PD),
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Table 2: An example output table provided as feedback in the Others condition of the (Du et al., n.d.) experiment

Defender 3 Decision (Me)

Defender 1 Decision

Defender 2 Decision

Information not shared with Defender 1,

Information shared with Defender 2 He was attacked

Defender 1 shared information with me,

Defender 2 didn’t share any information

My Payoff with Defender 1 : 35
Defender 1’s Payoff with me : -15

My Payoff with Defender 2 : 0
Defender 2’s Payoff with me : O

is based on a model of individual learning and decisions
from experience in repeated two-player prisoner’s dilemma
(Gonzalez et al., 2015), and expands that concept to a
multiplayer situation beyond a dyad. Like all IBL models,
the MDIBL-PD model relies on the IBL Theory (i.e., IBLT)
(Gonzalez et al., 2003), a well-known cognitive theory of
experiential decision making. The key idea of this theory
is that decisions are made by recognition of similar past
experiences, their integration into the generation of expected
utility of decision alternatives, and the selection of the
alternative with the maximal expected utility. An IBL model
can accurately represent the content of human memory,
recognition, learning, and recall of experiences in decision
making.

The IBLT process and mechanisms are general to every
IBL model. These have been published in the past, but
we repeat the mathematical formulations of the theory here
for completeness. In IBLT, an “instance” is a memory unit
that results from the potential alternatives evaluated. These
memory representations consist of three elements that are
constructed over time: a situation state s that is composed
of a set of characteristics f; a decision or action a taken
corresponding to an alternative in state s; and an expected
utility or experienced outcome x of the action taken in a state.
Concretely, for an IBL agent, an option k = (s,a) is defined
by the action a in the state s. At time ¢, assume that there are
ny different instances (k;,xu;) for i = 1,...,ny, associated
with k. Each instance i in memory has an activation value,
which represents how readily available this information is in
memory (Anderson & Lebiere, 1998). Here, the equation
captures recency, frequency, similarity, and noise in memory.

. . 1-E,
Aiki,1n< Yy (t—t’)d)—&-(ijSlmj( },ff’)-ﬁ-cln%,
1€ i "

3)
where d, o and ¢ are the decay, mismatch penalty, and
noise parameters, respectively, and Ty, C {0,...,t — 1} is the
set of the previous timestamps in which the instance i was
observed, ff is the j-th attribute of the state s, and Sim;
is a similarity function associated with the j-th attribute.
The rightmost term represents noise to capture individual
variation in activation, and &;, is a random number drawn
from a uniform distribution U (0, 1) at each step and for each
instance and option.
The activation of an instance i is used to determine the
probability of retrieving an instance from memory. The
probability of an instance i is defined by a soft-max function:
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where T is the Boltzmann constant (i.e., the “temperature")
in the Boltzmann distribution. For simplicity, T is often
defined as a function of the same ¢ used in the activation
equation T = oV2.

The expected utility of option k is calculated based on
Blending as specified in the choice tasks:

Nkt
Vie = Zpik,-zxik,-t~
i=1

(&)

The choice rule is to select the option with the maximum
blended value.

MDIBL-PD model of Information Sharing

The IBL model of the individual defender is primarily
concerned with the learning processes determined by the
various levels of information available to the model. We
denote the within-group defender index as x € {1,2,3} and
their sharing decisions as D, € {C(Share), D(Not-Share)}.

The new MDIBL-PD model was developed for both the
own and others information conditions described above.
Each IBL agent in the MDIBL-PD model makes decisions
using the same procedure defined in the previous section.
The human participants in the condition Others receive
information on the outcome and the breach status of other
players (Table 2). To capture this interdependence, we
modified the blending equation (Eq.5) to account for the
outcome of the other player, as suggested in (Gonzalez et al.,
2015).

Actions a: In the MDG, the choice options are defined by
the actions that each defender can take. The defender D,
can choose not to share information, to share information
with one or both of the other defenders, denoted as None,

D(x11) mod3» D(x+2) mod3. Both.

State Si: The situation state of the defender
consists of four attributes: the breach status A, €
{1(attacked),O(safe) }, probabilityo fbreach(Pb}), and

the expectation of receiving information from each player
(E3,.). Thus, the situation state s of participant i (Defender x)
Sl o — (AL PHL t
at trial 7 is st = (Aﬂpbi?ED(H,) mOM,ED(XH) mnda).
Breach status A and probability of breach Pb! have direct
and indirect affect on the outcome of a trial, thus are included

as the context information whose pure appearance might
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affect human’s information sharing tendency. As suggested
by (Zhang, Lin, Jing, Feng, & Gu, 2019), beliefs and behavior
correlate within rounds in repeated prisoners’ dilemma game,
and beliefs in one round vary with behavior in the previous
round. Thus, we include EI’Jr to capture the association
between the expectation of receiving information from peers
and the decision of whether to share information with
them. It is approximated with the accumulated proportion of
receiving information from Dy (Eq.6). Here, we assume that
participants can keep track of the interaction experience with
their peers. This assumption can be relaxed by manipulating
the window of proportion calculation. After receiving the
actual sharing decisions at the trial #, the EJ, slots will be
updated to 7j, to store the real interaction experience in
memory. When the expectation Eth is closer to 1, memory

instances of receiving information from peer x (T[)/Y
1,#' € [0,1)) have greater similarities to the current situation,
resulting in higher activation values (3), and higher likelihood
to be recovered (4). Similarly, when the expectation EI’DX is

closer to 0, memories of defected by peer x (T’; =0, €
[0,2)) are more likely to be retrieved. The similarity of these
numeric attributes is calculated linearly and normalized to

N
[0,1]. ) Yo T,

be™ 4

(6)

Utility U!: Depending on the experimental condition, the
players in the MDG received only information on their
own actions (Own) or about the sharing decisions of other
defenders and the effect on their outcome of themselves
(Others). Therefore, the utility of the defender x in the trial ¢
is the points gained or lost exclusively at that trial, constituted
with the benefit of receiving information (35 points), the cost
of sharing information (—15 points) and the cost of being
attacked (Eq.7). The cost-benefit of information sharing
forms the dyadic prisoner’s dilemma as shown in Table 1.
The cost of the breach is included as part of the utility, since
the status of the breach has an effect on the sharing decisions
of human defenders.

Ul =A =7 +(=30)-A" 0

Up = Ay +w - At(erl) mod3 T wh- At(x+2) moas (8
1 — Surprisé!

wy = LoSuprisel ©)

W %’P”S@’z (10)

To simulate how humans account for the outcome of
others, the utility for the blended value calculations is set
as the weighted sum of the point update of the defender
Dy and his peers (Eq.8). Inspired by the notion of Social
value orientation (SVO) (Balliet, Parks, & Joireman, 2009), w
represents the degree to which a player is willing to consider
the outcome of the other player for each option when making
a decision that maximizes the gains in each trial.

Research in (Gonzalez et al., 2015) finds that the dynamic
w dependent on individual experiences can best explain

84

human cooperation behavior. Under this hypothesis, a player
will account for the outcome of the opponent as a function
of a normalized gap between expected and actual outcomes
(surprise). The value of w! (with respect to the opponent’s
outcome in the trial #) will be reduced by surprise (Eq.9
and Eq.10). We assume that the players evaluate the benefit
of sharing information with each other independently with
different weights, updated according to separate surprises
and gaps.

The normalization of surprises limited the value of
Surprise! within the range of [0,1], the value of w! within
[0,0.5], and the sum of weights on the benefit of others
within [0, 1]. This formulation assumes that the way a player
accounts for the opponent’s outcomes will vary between
extreme selfish when wi = w) = 0 and extreme fairness when
wi =whH=0.5.

Gap
[Mean(Gapy) + Gapi]
Gap; = Abs(VI™' — (Xij+ 0;)))

(an

Surprise} =
(12)

1 1
Mean(Gapt) = Mean(Gapl™")(1 - %) —|—Gap§(%) (13)

Pre-Population: From human data, we observed that
more than 70% of the human participants chose to share
information with both peers at the beginning. (Andreoni
& Miller, 1993) show that some fraction of the population
actually has altruistic motives. This ingrained tendency to
share between human subjects can be the consequence of
the experience of cooperation in recent years, or it could be
an experimental effect of human participants who expected
to cooperate in a Multi-Defender Collaboration Game. To
capture this preference, and inspired by the conclusion in
(Kelley & Stahelski, 1970) that there are two stable types
of individuals that can be described as cooperative and
competitive, we prepopulate the IBL agents with instances
that represent these initial tendencies. 70% of IBL agents
are prepopulated with Share instances with positive rewards
(0, 20, 40 for zero, one, two sharing - receiving with peers),
while 30% of IBL agents are prepopulated with Not-share
instances with negative rewards (0, —15, —30 for zero, one,
two sharing - not receiving with peers). Cooperatively biased
agents and defectively biased agents are randomly formed
groups of three. Each group contains random number (0
to 3) of cooperatively biased agents. The assumption is
that the decrease in the proportion of information sharing
is caused by the pairing of cooperative participants with
defective participants.

Simulation Procedure: The MDIBL-PD model with
default parameters was run for 100 simulated groups of
players in each of the two information conditions. Each
group plays the game for 50 trials. The utility assignment for
Own condition follows Eq.7. The utility for Others condition
follows Eq.8 with wy,w; defined by Eq.9 and Eq.10.
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Dependent Measures: We calculate the overall proportion
of sharing in Own and Others conditions, the proportion of
sharing with Both, One, or None of the other defenders, and
the sequential dependencies that emerged from the interaction
between IBL agents in a group (Martin, Gonzalez, Juvina, &
Lebiere, 2014). Sequential dependencies measures include:
Mistrust, the decision a player makes to defect at time ¢, after
both players mutually defected at time ¢t — 1; Forgiveness (Not
Share - Share), the decision to continue cooperating at time
t, although mutual cooperation was not achieved due to the
defection of the other at time t — 1; Abuse (Share - Not Share),
the decision to continue defecting at time ¢ after a profitable
defection at ¢+ — 1; and Trust, the decision to continue
cooperating at time ¢, after successful mutual cooperation at
time t — 1. To assess the precision of the predictions of the
model with respect to human data, we calculated the mean
squared deviation (MSD) using the average of the dependent
measure (e.g., the average proportion of cooperation per trial)
and using the Pearson correlation coefficient (r) to assess the
similarity of time trends between the model and human data.

Results
Overall Information Sharing

Figure 1 illustrates the proportion of sharing for the
MDIBL-PD model compared to human data in the conditions
Own and Others conditions over the course of 50 trials.
The proportion of sharing in human data is higher in
the Others condition (Mean=0.74, SD=0.44) than in the
Own condition(Mean=0.59, SD=0.49). As shown in Fig.1,
the MDIBL-PD model captures these observed trends very
accurately. The MSD between human data and model data in
Own condition is 0.0029, with r = .86, p < 0.001. The MSD

in Others condition is 0.0022, with » = .76, p < 0.001.

Own Others
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Figure 1: Overtime Sharing Proportion for the Own
condition (left panel) and the Others condition (right panel)

Proportion of sharing with None, One or Both

Figure 2-Top panel, represents the proportion of information
sharing with both one and none of the other players in the
Own condition. More than 70% human participants choose
to share with Both peers at the beginning. The proportion
decreases over time, and some participants shift to sharing
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with One of the peers, and more participants choose to share
with None. Most importantly, in the Own condition, where
participants only receive feedback about their own actions
and outcomes, the proportion of sharing with none of the
other players increases over the 50 trials.

The model is able to approximate the trends of three types
of options accurately. As shown in Fig.2, the deviation
between human and model in the proportion of sharing with
Both, One, and None is trivial, especially for the None option
with (MSD = 0.0029,r = .86, p < 0.001). We note that the
model seems to show a stronger preference for sharing with
One, while human participants share more with Both. A
possible explanation is that a fraction of human participants
are altruistic or are trying to build an altruistic reputation by
indiscriminately sharing with Both. The model’s decisions,
driven by the utility exclusively, converge relatively quickly
to the more rewarding options, i.e., sharing with the more
reciprocal peer.

Own
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Figure 2: Sharing proportions with Both, One, or None of
the other players for the Own condition (top panel) and the
Others condition (bottom panel)

Figure 2-Bottom panel, represents the proportion of
information sharing with both, one and none of the other
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players in the Others condition. The model can account for
the dynamics of choosing three types of option (Both: MSD =
0.0.0041,r = .86,P < 0.001, One: MSD = 0.0069,r =
.58, p < 0.001, None: MSD = 0.0049,r = .64,p < 0.001).
Similar to Own condition, human participants demonstrate an
initial preference to share with Both other players. Although
still increasing, the upward trend of sharing with None is
more flat, indicating that the information of the actions and
results of others is effective in maintaining cooperation.

Sequential Dependencies

Fig.3-Left panels demonstrate the comparison between
human and model in terms of sequential dependency metrics
in Own condition. The model fits Mistrust, Trust, and
Forgiveness reasonably well with a significant positive
correlation with human data (Trust: MSD = 0.0203,r =
.55,P < 0.001, Mistrust: MSD = 0.0052,r = .92, p < 0.001,
Forgiveness: MSD = 0.0207,r = .83, p < 0.001), but exhibits
approximately 25% more Abuse than human players (MSD =
0.0708,r = .16, p > 0.05).

Similarly, Fig.3-Right panels show that the model matches
human behavior for the Others condition in terms of Mistrust
(MSD =0.0158,r=.85,p <0.001) and Forgiveness (MSD =
0.0404,r = .80, p < 0.001), but deviates on Trust (MSD =
0.0291,r = .12,p > 0.05) and Abuse (MSD = 0.0583,r =
.36,p > 0.05). The model is still more likely to Abuse
and Forgive than humans. Defect is getting increasingly
rewarding as the game progresses, and it becomes more
affordable to lose a cooperator.

Discussion

In this paper, we propose a cognitive model that represents
the dynamics of cooperation among defenders in a
multi-defender game. The MDIBL-PD model builds on and
advances the model proposed in (Gonzalez et al., 2015) for a
dyad playing the PD game. The model proposes that direct
information on the actions of others, whether they share or
not with the own player, will influence the emergence of
cooperation in the group. The outcomes of the other players
in the group are used by each player to make their own
decisions. However, the outcomes of the other players are
only considered to a certain extent (i.e., "w"). The main
insight from (Gonzalez et al., 2015) is that such "w" is
dynamic and depends greatly on how the other players behave
with the own player in each round of the game. That is, the
regard that the self gives to others depends on the dynamic
behaviors of others. This idea was used in the MDIBL-PD
model and simulation results were produced to replicate the
conditions of an experiment carried out with human data.
The results demonstrate that the model performed similarly
to the actions taken by humans. First, with more information
on Others, individuals share information more often in the
MDG. Second, humans tend to decrease the proportion of
sharing with both players and increase the proportion of their
no-sharing behavior over time. This happens particularly in
the Own condition. There are also some differences between
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Figure 3: Sequential dependencies in the Own condition (top
panel) and the Others condition (bottom panel), showing
Trust, Mistrust, Abuse, and Forgiveness behaviors of the

model and human participants

the model’s predictions and human data. For example, in the
Own condition, the model initially tends to share more with
one of the other players. The model also shows a higher
proportion of "abuse" of the other players, defined as the
proportion of defections (not sharing) the model makes after
the other player has cooperated (shared). It seems that the
model is more "selfish" than humans are regardless of the
level of information, as clearly the level of abuse in the model
is higher than that of human participants.

Sequential dependencies also indicate that humans have
difficulty sharing information with other players, increasing
the level of mistrust of other players over time. This pattern
is particularly strong in the Own condition, and the model
replicates such trends.

Future research will explore more of how to account for
others’ decisions while making decisions, for example the
surprise and w values to explain human behavior. We will
also look at the triads in more detail and see the proportion of
sharing with each of the two other players.
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Abstract

We have developed an analysis stream for integrating a
cognitive model with EEG data to reconstruct the cognition of
individual subjects. A critical component of this method is
the Sketch level that combines cognitive modeling and
classification of EEG data using an HSMM to identify and
place critical events over the timeline of a task. Multiple
factors can influence sketch accuracy. In this study, we
investigated the effect of game play elements on sketch
accuracy across two EEG experiments where subjects
interacted with the Space Fortress video game. Experiment 1
consisted of elaborate interface elements that accompanied
game events (multiple sound effects, visual explosions).
Subjects in Experiment 2 performed the same task, but audio
and visual feedback elements were greatly reduced. We find
that sketch accuracy while still much better than chance in
Experiment 2, was significantly worse than in Experiment 1.

Keywords: EEG, cognitive  modeling,  cognitive
reconstruction, HSMM, MVPA, Space Fortress, video game,
BCI

Introduction

Considerable  research  has  studied classifying
electroencephalography (EEG) signals and the results have
been applied to a number of domains such as brain-
computer interfaces (BCI; Lotte et al., 2018), emotion
recognition (Kim et al.,, 2013), understanding human
memory (Noh et al., 2014), estimating workload (Brouwer
et al., 2012), among others. Much of this research is
conducted using a limited set of interaction paradigms
(Abiri et al., 2019; Saeidi et al., 2021). In active BCI
systems, classification methods are used to identify specific
brain signals consciously and purposefully generated by the
participant. Reactive BCI systems involves tasks where the
experimenter has control over the presentation of stimuli
and examines activity in predefined intervals, typically
locked to the presentation of these stimuli. Research on
passive BCI focuses on the classification of brain states that
occur within complex, operational environments such as
driving or aviation. Within passive BCI systems the
sequence of events emerges as an interaction between the
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subject and the environment. These events can reflect a
complex interplay between the cognitive process and task
context and the uncertain timing of these events adds an
additional challenge to their detection.  Although this
research is often conducted within realistic situations, the
focus of the detection is often limited to considering only a
few, highly distinguishable cognitive states(Arico et al.,
2016). The ability to decode diverse, time-variable events
has valuable implications for enabling the development of
neuroadaptive technologies to support complex tasks and
greater interactivity (Krol et al., 2018)

Video games can provide a rich testbed that begin to
bridge the gap between doing traditional EEG experiments
in tightly controlled lab studies and the complex tasks in
which people routinely engage every day. In recent
research, Anderson, et al, (2020) decoded cognitive,
perceptual, and motor events from EEG data gathered from
participants playing the video game Space Fortress
(Donchin, 1989; Frederiksen & White, 1989; Gopher et al.,
1989). In that work, they presented a Sketch and Stitch
method that was successful in reconstructing an entire
sequence of actions to capture the play of a subject in a
game. The Sketch component of that procedure was used to
infer a chronology of the critical events of a subject’s
gameplay by using a hidden semi-Markov model (HSMM)
to combine cognitive modeling and EEG data. The critical
events they tried to identify were

1. Kills: when a player succeeds in destroying fortress;

2. Deaths: when a player’s ship is destroyed;

3. Resets: when a player slips in trying to build up the
vulnerability of the fortress and is reset to 0.

They exploited the fact that such events during gameplay
tend to produce robust EEG signals while a cognitive model
can provide probabilities of various transitions between
critical events as well as the distribution of intervals
between these events. The approach identifies the most
probable sequence of critical events and when they
happened.

While Anderson et al (2020) had success identifying
critical events in a subject’s game play, the Space Fortress
interface accompanies these critical events by special visual
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and auditory effects, raising the question if this success just
depended on detecting perceptual responses in the EEG. For
example, the destruction of a ship was accompanied by a
sound effect and an elaborate visual element meant to
indicate an explosion. In this paper, we explore the question
of how well the method would work in a situation where
these events occurred without the strong perceptual
correlates. We ran an experiment that replicated the one
described in Anderson et al (2020) but reduced the audio
and visual events that accompanied game play. Necessarily,
something in the interface must change to indicate to the
subject that the event has happened, but we eliminated
strong visual and auditory signals. We will compare the
results with this reduced interface to the prior results with
the original Space Fortress interface.

Space Fortress Game

Figure 1 illustrates the critical elements of the game.
Players are instructed to fly a ship between the two
hexagons.  They are firing missiles at a fortress in the
middle, while trying to avoid being hit by shells fired by the
fortress. The ship flies in a frictionless space. To navigate,
the player must combine thrusts in various directions to
achieve a path around the fortress. Mastering navigation in
the Space Fortress environment is challenging; while
subjects are overwhelmingly video game players, most have
no experience in navigating in a frictionless environment.
We use the Pygame implementation of Space Fortress
(Destefano, 2010)where all actions are key presses.

Figure 1: Snapshot of ship (nearest outer hexagon)
shooting missile (arrow) at fortress (inside inner hexagon) .

We used the Autoturn version of the game introduced in
Anderson et al. (2019) and described in detail in that paper.
In this variant of the game, the ship is always aimed at the
fortress and subjects do not have to turn it. There are only
two relevant keys: A left-hand press of the W key to add
thrust to the ship and a right-hand press of the space bar to
fire at the fortress. The ship begins each game aimed at the
fortress, at a 9:00 starting position (Figure 1), and flying at a
moderate speed parallel to the upper left diagonal segment
of the outer hexagon . To avoid having their ship destroyed,
subjects must avoid hitting the inner or outer hexagons, and
they must fly fast enough to prevent the fortress from
aiming, firing at, and hitting the ship. When subjects are
successful the ship goes around the fortress in a clockwise
direction. They can destroy the fortress by shooting
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missiles at it to build up its vulnerability and then destroying
it with a “kill shot” (two shots in rapid succession). If the
fortress is destroyed, it leaves the screen for 1 second before
respawning. If the ship is destroyed, it respawns after 1
second in the starting position flying along the starting
vector. The replay site
(http://andersonlab.net/reconstruction/) offers examples of
game play.

Anderson et al. (2019) found that subjects can achieve
relatively high and stable performance within an hour of
playing AutoTurn (much faster than in original Space
Fortress where subjects are also responsible for turning their
ship among other things). To maintain a constant challenge
of game play, a staircase procedure decreased the separation
between the inner and outer hexagons as subjects got better.
Subjects played 1-minute games. During the first 10 games
the inner corners were 40 pixels from the center and the
outer corners were 200 pixels from the center producing a
width of 160 pixels. After the tenth game, the border width
was reduced by 10 pixels if the subject had 0 or 1 deaths in
the prior game and it was increased by 30 pixels (to a
maximum width of 160 pixels) if they had 2 or more deaths.
In this way the death rate in the game was maintained at
about 1 death per 1-minute game. For each 10 pixels the
border is reduced, subjects get an additional 10 points for
each fortress they destroy. Navigation becomes more
difficult as one has to fly between narrower borders, with
many deaths resulting from thrusting into the inner hexagon,
a rare event with the original 160-pixel width.

The Sketch procedure combines classification results
from the EEG signal with information about the expected
distribution of critical events from a cognitive model of the
subject.  The cognitive model we use was the ACT-R
model that was described in Anderson (2019). We
simulated 100 subjects by running the model 100 times on
60 games under the same game conditions as humans to
generate behavioral results. We ran the model in over
35,000 games to generate statistics used in the Sketch
procedure.

Methods
Here we describe data collection, pre-processing and
procedures. We will refer to the reduced interface
experiment as “Experiment 2” to contrast it with

“Experiment 17 in Anderson, et al (2020).

Subjects

A total of 20 subjects (6 male, 14 female) were recruited
from the CMU population of students and researchers
between the ages of 18 and 40. None reported a history of
neurological impairment. Subjects were paid between $60
and $75 for participation, depending on task performance.
The duration of the experiment, including setup and task
execution was less than 2 hours. All participants signed a
written informed consent form. The experimental protocol
was reviewed and approved by the Carnegie Mellon
University Institutional Review Board.
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Task

Subjects were given a verbal overview of the time course
of the experiment and how to play the game, after which
they interacted with the software at their own pace. After
reviewing instructions displayed onscreen, they played 60 1-
minute games. Each 1-minute game yielded 1800 1/30 sec
time frames or game ticks. The full game state is recorded
by the software on every game tick. The record of game
state included the keyboard (keys down/up) and all aspects
of the display screen (direction, speed and location of the
ship if alive, fortress orientation, presence of shells or
missiles, etc.).

Three changes made from the game used in Anderson et
al (2020). First, as already noted, we eliminated all
explosions (visual and auditory effects).  Second, in the
original game one auditory tone accompanied each shot and
another auditory tone accompanied a reset. This resulted in
a quick double tone when there was a reset. In this version
to eliminate the double tone, we used one tone when a shot
resulted in an increment to vulnerability and another tone
when there was a reset of vulnerability. Half of the subjects
had one pairing of tones to the vulnerability changes while
this was switched for the other half. Third, we changed the
awarding of points. In the original game, as soon as the
borders began to narrow (game 11) subjects received double
the 100 points for a fortress kill. As described above, in this
game they received an additional 10 points for each 10-pixel
reduction of the border width. This change was introduced
to keep subjects motivated to play at a higher level of
difficulty.

EEG Analysis

The EEG was recorded from 128 Ag-AgCl sintered
electrodes (10-20 system) using a Biosemi Active Il System
(Biosemi, Amsterdam, Netherlands). The EEG signal was
recorded continuously for the entire experimental session
and broken into 1-minute games. Portions of the game
periods that included poor signal were excluded. Individual
channels within an epoch were flagged based on having
extreme values for mean absolute deviation, drift, or range.
Flagged channels were interpolated. Epochs that still
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contained channels with extreme values after these steps
were flagged and rejected. This resulted in loss of the signal
for an average of 2.3 seconds per game for games used in
the decoding (44.4% of the games had no lost signal).

In order to get simple correspondence with the game state
data, the 512 Hz data were then down-sampled to 30 Hz
with default EEGLab anti-aliasing filtering applied. A one-
second window around each game tick (14 game ticks
before, the game tick, and 15 game ticks after) was used to
classify whether a game tick contained a critical event.
Thus each game tick had associated with it a vector of
30*128=3840 electrode readings, representing regional
effects, frequency effects below 30 Hz, and their
interactions. The first 1000 components of the PCA of these
vectors were used for classification.

Classification

We replicated the Sketch procedure described in
Anderson, et al (2020). We focused our analysis on the last
55 games for each subject where performance is relatively
stable while also employing the same game exclusion
criteria used in experiment 1. Of the 1100 games, we
excluded 10 games because of border width or relative
inactivity by the subjects (the one and only game where the
staircase procedure resulted in a border width of 30 pixels, 3
games where subjects failed to destroy a fortress without
resetting or being killed, and 6 further games with 12 or
fewer critical events) leaving 1090 games.

Classification was performed on the 1000-element vectors
produced by the PCA to identify the critical events that
determine the critical sketch of game activity. We used a
leave-one-game-out method where for a given target game
of a particular subject, linear discriminant classifier training
was done using all remaining games for that subject and all
games from the remainder of the subjects. The classifier was
trained to label the EEG activity vectors with the critical
event corresponding to the game tick the vector describes.
To reflect the point that a subject’s own data are likely the
most relevant, the training games for each subject are
weighted 15 times more than the games of other subjects.
This leave-one-game-out procedure was repeated for every
game to generate event probabilities across all 1090 games.
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Results

Behavioral Results

The time course of various performance measures over 60
games are shown in Figure 2. Data shown include those
from Experiment 1 labeled as ‘Subjects Exp1’, the reduced-
interface-element Experiment 2 described above labeled as
‘Subjects Exp2’, and the model data from 100 simulated
subjects, labeled as Models. Games 1-10 all had a fixed
border width of 160 pixels between the small inner hexagon
that contains the fortress and the outer hexagon. After game
10, the staircase procedure was employed: border widths for
successive games would continue to decrease at 10 pixel
decrements until a subject’s ship was destroyed 2 times or
more, at which point the next game would reset to a larger
width.

Part a shows border width. Subject behavior in both
experiments results in slightly tighter border widths than
those from model gameplay. Considering only games 11-60
where border width could vary according to the staircase
procedure, Exp2 subjects attained somewhat tighter border
widths (M = 98.2, SD = 13.46) than Expl subjects (M =
107.6, SD 15.59), t(38)=2.04, p=.049 reflecting the
change of scoring scheme from Experiment 1. Figure 1b
shows canonical point scores by game. Canonical points
show what subjects would achieve with the original 100
points per kill without the further bonuses they get for kills
at narrow widths. Points were comparable for models and
subjects over the course of the experiment, and there was a
not a significant difference in points scored between Exp2
subjects (M = 627.1, SD = 122.08) and Expl (M = 655.5,
SD = 106.76), t(38) = 0.782, p=.44. A similar pattern holds
for fortress kills shown in Figure 1c, with roughly 9.5 Kills
per game in both Exp2 (M = 9.4, SD = 1.67) and Expl (M =
9.7, SD = 1.32). Similarly, there was no difference in ship
deaths (Figure 1d) between Exp2 (M = 0.9, SD = 0.12) and
Expl (M = 0.9, SD = 0.13), both averaging just under 1
death per game which was the goal of the staircase
manipulation.

Generating a Sketch

While the above performance measures show that
behavioral performance is comparable between the
enhanced and reduced versions of the game, the essential
question we want to answer is whether and how features of
the gaming interface affect the ability of the Sketch
procedure to accurately assign the identity and timing of
critical events throughout a game. There are five critical
events that occurred during gameplay:

1. Kills. Player destroys the fortress and scores 100+ points.

2. Fortress Respawns. 1 second after the fortress is killed, it
reappears and normal gameplay can resume.

3.Deaths. The player’s ship is destroyed and the player
loses 100 points.

4.Ship Respawns. The ship is absent for 1 second after
death, then reappears and normal gameplay can resume.

5.Resets. If the interval between ship missile firing is less
than 250ms and the vulnerability is less than 11, the
fortress vulnerability will be set back to zero and the
subject must begin rebuilding the vulnerability from
scratch.

Table 1: Interface Elements for Game Events
Experiment 1 Experiment 2
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Event Hear See Hear See
Ship Death Whoosh  Explode
Fortress Kill ~ Whoosh  Explode
Missile Fired HF Beep -> ->
Fortress Fired LF Beep <> <>
Vuln Increase Beep 1/2
Vuln Reset Beep Beep 2/2

Table 1 shows the interface elements associated with
various game events in both experiments. Experiment 2 has
eliminated all unnecessary sounds and visual effects.
Missile and shell firing are still accompanied by the visual
display of the missile or shell flying across the space.
Increments and decrements of vulnerability are indicated by
distinctive tones so the subject does not have to be
constantly looking at vulnerability on a different part of the
screen. In addition, ship deaths and fortress deaths are

+10
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accompanied by a 1-second removal of the fortress or ship
so the subject does not waste actions.

While the classification component of the Sketch
procedure is multivariate in nature, it is useful to have a
sense of the mean EEG activity around events that will be
classified. We show the activity around a subset of critical
events in Figure 3. Each of the panels shows a full second
of activity (the same time-window used in the classification
procedure), from 500 ms before the event to 500 ms after.

There seems to be a post-event positivity that is common
to kills, deaths, and resets in both experiments, though in the
current experiment, kills show only a return to baseline from
negativity as opposed to positivity. Consistent with results
reported in Anderson, et al (2020), the magnitude of this
positivity in both experiments varies with the rarity of the
event. Kills are most frequent and show the smallest
positivity while deaths are the least frequent event and show
the greatest return to positivity. This is consistent with what
would be expected from a P300 (Polich, 2012).

Classification Results

As in Anderson et al (2020), the leave-one-game-out
cross validation procedure to predict labels for the 5 classes
of critical events also requires inclusion of a sixth class
containing null events. To avoid being overwhelmed by
null events, for every critical game tick in a single game, 2
non-critical game ticks were chosen randomly to include in
the classifier training phase. The overall discriminability d-
prime was 1.76. Average accuracy was 54.0% and the
average pairwise AUC was .915. This was slightly lower
than Anderson et al. (2020) where d-prime was 2.0, average
accuracy was 59.6% and the average pairwise AUC was
.942.

As detailed in Anderson, et al (2020), the classification
results themselves would not give us very good critical
event sketches. For example, many of the null events are
labeled as being critical events. Further, even if we
managed to achieve unrealistically good classification
accuracy, an unconstrained critical event sketch would
contain sequences of events that are unlikely within the
dynamics of the Space Fortress game. We need a way to tell
the real critical events from the false labels and sequence
events realistically. The Sketch method was developed for
this purpose.  This procedure combines statistics about
what critical events are likely to occur when. This is
calculated from a large library of model runs with output
from the classifier to produce a critical sketch. The model
games are used to estimate probabilities for a critical event
transition matrix as well as latency distributions for time
elapsed between events. The transition matrices and latency
distributions are used to parameterize an HSMM.

The HSMM can efficiently combine the model-based
statistics and conditional probabilities from the EEG
classifier to estimate the most likely sequence of events in a
game. Any sequence of events can be denoted ay, ay, ..., an
occurring at game ticks ti, to, ..., ty where a; is game start
(and so t1 is game tick 1), an is the end (t, is the 1800th game
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tick), and a, ..., an1 are fortress kills and respawns, ship
deaths and respawns, and vulnerability resets. Anderson, et
al (2020) derived the following proportionality describing
the probability of any such sequence relative to the
probability of other sequences:
P(EEG(t,)1a,,)
P(EEG(t,,,)| Null)
where trans(ai,ai+1) is the probability of transition
between the events a; and ai+1 estimated from the model
runs, f(tis1 - ti| @i, ai«1) is the probability of the ti+1 - ti game
ticks between the events a; and aj+, instantiated with the
distributions computed from the model runs, and
P(EEG(ti+1, tix1) | ai+1) is the conditional probability of the
EEG signal for this period if it ends in a1 where the
conditional probabilities are generated from the classifier.
The Viterbi algorithm (Rabiner, 1989) for hidden semi-
Markov models was used to find the assignment of events
(event identity and timestamp) that maximized Prob(ai, az,
..., an). This produced for each game a critical event sketch:
a set of inferred events and the time ticks when they
occurred. We use two measures to evaluate the goodness of
match between sketch and actual game events: recall and
precision (Buckland & Gey, 1994). We focus only on Kills,
deaths and resets (ignoring respawns of ship and fortress as
they were directly tied to kills and deaths with a 1 second
lag). The recall measure considers all actual game events
that occur and the identity of the closest sketch event to
each. If the identity of the closest sketch event matched the
actual game event, the assigned recall score would be the
distance in time ticks between them. If the sketch and
actual event time tick were identical, the score would be 0.
If the sketch event was further than 2.5 seconds (75 time
ticks) away, or if the identity of the sketch event did not
match, a score of 75 was assigned. The precision measure
used the same scoring procedure but was anchored to
predicted sketch events and evaluated match to the closest
game events.

n-1
Prob(a,a,---a,)= 1_[ trans(a;,a,,)* f(t, —t la,a,)*

i=l
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Figure 4 shows the distribution of recall and precision
scores for Experiments 1 and 2 and provides a comparison
to chance (reconstructions randomly paired with games).
The mean recall and precision was 14.1 and 11.8 for
Experiment 1, 18.4 and 18.5 for Experiment 2, and 48.1 and
47.0 for chance. While the reconstructions for both
experiments are far better than chance, the difference in
recall is significant (t(38)=2.25, p< .05) as is the difference
in precision (t(38)=2.85, p <.01).

Conclusion

A straightforward conclusion seems to emerge when
comparing sketch results from the embellished Experiment
1 to relatively impoverished Experiment 2: While there
remains enough information in the cognitive response to
events to achieve a fairly high-quality sketch of the events
in Experiment 2, the sketch accuracy is somewhat lower
than in Experiment 1, reflecting the slightly poorer
classification performance, likely a result of reduced game
feedback elements. As Figure 2 shows, the current ACT-R
model only approximately matches subject performance. A
direction for improvement of reconstruction in either
experiment would be a further improvement in that model.
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Abstract

In the fan effect, reaction time (RT) increases as a function of
fan size (i.e. the number of associations of a fact). Spreading
activation in ACT-R provides a good account of the fan effect
at low fan size (i.e., 1-4). However, little is known about the
predictions of ACT-R at ecologically valid scales. We devel-
oped a general guessing mixture model (GMM) within ACT-R
in which a guessing process is triggered by retrieval failures,
and analyzed the predictions for fan sizes much larger than
those used in laboratory experiments. Our analysis revealed
the following properties of the GMM: RT increased as a func-
tion of fan size, but stays within a plausible range (< 2 seconds)
as long as the retrieval threshold is not excessively low, and, in
the limit, accuracy asymptotes at the value of the guessing bias
parameter. We discuss practical challenges with testing the
predictions at larger fan sizes.

Keywords: ACT-R; spreading activation; fan effect; simula-
tion study; declarative memorys; retrieval threshold

Introduction

One goal of cognitive architectures is to develop unified the-
ories of cognition that scale to complex tasks in realistic en-
vironments (Newell 1990). Part of this larger goal is identi-
fying memory processes and representations that support the
retrieval of information from an extensive knowledge base.
To achieve this goal, it is necessary to stress test existing the-
ories and identify boundary conditions where the predictions
may breakdown. Confidence in a theory will invariably in-
crease if it survives rigorous stress testing. However, a failure
provides an opportunity to revise the theory or develop al-
ternatives. In either case, pushing the limits of a theory can
provide important scientific insights and serve as a catalyst
for scientific progress.

One theoretical question concerning the ACT-R cognitive
architecture (Anderson 2007) is whether there are limits in
the ability of spreading activation to account for the classic
fan effect as the fan size increases. The fan effect is a phe-
nomenon whereby retrieval time increases as the number of
associations with a fact i.e. the fan size increases (Anderson
1974). For example, it takes longer to verify whether the hip-
pie was located in the house if he or she was known to be
in three places rather than one place. According to ACT-R,
the fan effect arises through spreading activation in which a
fixed quantity of activation, evenly distributed among associ-
ations in memory, spreads through a semantic network. As
the fan size increases, the amount of activation distributed to
each memory decreases, leading to slower retrieval time.

In a typical fan experiment, the fan size ranges from 1 to 4
(Anderson 1974; Sohn et al. 2004). ACT-R provides an ac-
curate description of the fan effect within this limited range
of fan size. Whether the fan effect increases with larger fan
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size and whether ACT-R continues to provide an accurate ac-
count remain open questions. From a theoretical standpoint,
these questions are interesting because spreading activation
may greatly inhibit the retrieval of requested information at
large fan sizes, leading to low accuracy. Nonetheless, humans
seem to retrieve information effectively even though the fan
size in certain knowledge domains might be large, such as
autobiographical memory. From a practical standpoint, this
question is interesting for modeling human knowledge in ap-
plied domains. Given that human knowledge is extensive
and associations among some facts may be high, what are
the implications for predicting retrieval time and accuracy?
Our goal is to analyze ACT-R’s predictions at these boundary
conditions.

Overview

The remainder of the paper is organized as follows. First,
we describe how the fan effect is typically studied in a paired
associates recognition memory task. Next, we present a gen-
eral model of the fan effect and analyze several submodels
including the model presented in the ACT-R tutorial (ACT-R
Research Group n.d., Tutorial Unit 5). We compare the sub-
models at fan sizes much larger than have been examined in
the laboratory. Finally, we detail some practical limitations
in testing the predictions of spreading activation at scale. We
conclude with a discussion of the theoretical and practical im-
plications of our findings.

hremau tam\
P )

Figure 1: A bipartite graph of person-place pairs in a typical
fan experiment (ACT-R Research Group n.d., Tutorial Unit
5). Nodes represent persons or places and edges represent
associations between nodes. The number of edges connect-
ing to a node represents the fan size.

lawver P \h1pp1e (gmn / debutante

Fan Effect

The fan effect is typically studied in a paired associates recog-
nition task (Anderson 1974; Anderson and Reder 1999). Dur-
ing the learning phase, subjects study a series of word pairs
that vary in fan size. For example, consider the network dia-
gram in Figure 1. Each node represents either a person or a
place, each edge represents connections between two nodes,
and the number of edges connected to a node corresponds
to its fan size. In Figure 1, hippie has a fan size of f =3,
whereas earl has a fan size of f = 1. During the test phase,
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subjects must indicate “yes” if the word pair was studied or
“no” if the word pair was not studied. Half of the test trials are
targets in which the person and place were studied together
as a pair, such as (earl, castle) in Figure 1. The remaining test
trials are foils formed by switching person and place values
across studied pairs such that the person and place in the new
pair were not studied together. An example of a foil based on
Figure 1 is (earl, cave).

Typically, fan size is manipulated factorially across a small
range of values for the person and place attributes. Consider-
ing that we are interested in the predictions at large fan sizes,
we will simplify the design by setting f equal for both at-
tributes. At minimum, this design requires two sets of pairs,
with f2 pairs in each set for a total of 2 - f2. Having two sets
of pairs ensures that sufficient pairs exist for creating foils
with equal f.

General Model

Our analysis of ACT-R is organized around a general model
of the fan effect which we term the guessing mixture model
(GMM). In the GMM, responses are determined by a mixture
of a retrieval process and a guessing process. As described
below, the fan model presented in ACT-R Tutorial 5 is a spe-
cial case of the GMM. Figure 2 depicts the structure of the
GMM as a processing tree in which each node represents a
state and each branch represents a transition between states.
Each path—defined as a series of branches—terminates in a
“yes” or “no” response. The probability of traversing a path
is the product of branch probabilities within the path. The
marginal probability of a response is computed as the sum
of all branch probabilities that map to the response. For ex-
ample, the probability of responding “yes” on a target trial is
Pr(yes | target) =ty + (1 — t, — tmm) - g, Which is composed
of two paths: a path in which the matching chunk is retrieved
and a path in which a retrieval failure occurs and the response
“yes” is produced through a guessing process. Below, we will
show how the transition probabilities in Figure 2 can be ex-
pressed in terms of ACT-R’s memory retrieval mechanisms.

Knowledge Representation

In ACT-R, declarative memory consists of a set of chunks
M = {cj,cz,...¢,}. A chunk is a basic unit of declarative
knowledge. For a given fan size f, we assume that declarative
memory consists of a minimum required 2 - £ chunks corre-
sponding to each studied pair. Formally, a given chunk m is a
collection of slot-value pairs denoted as ¢, = {(si,vi)};c, »
where s; and v; are the slot and value of pair i, and I, is
the index set for the elements (slot-value pairs) of chunk
m. An example of a chunk in a typical fan experiment
is ¢, = {(person, hippie), (place, park) }, which indicates the
hippie is in the park. We will represent the mapping from
slots to values as ¢, (s) = v, which is empty or null if slot s is
not in ¢,,. Continuing with the example above, we can express
the mapping between place and park as ¢,,(place) = park.
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Figure 2: A tree diagram of the guessing mixture model.
Panel [a]: process tree for target trials where #,, is the proba-
bility of retrieving matching chunk on target trial, fy, is the
probability of retrieving mismatching chunk on target trial,
and g is the probability of guessing “yes”. Panel [b]: process
tree for foil trials where fi,, is the probability of retrieving
mismatching chunk on a foil trial

no

Retrieval Process

Upon submitting a retrieval request r to declarative memory, a
set of matching chunks R compete for retrieval and the chunk
with the highest activation is retrieved if it exceeds the re-
trieval threshold, T. A retrieval failure occurs if the highest
activation is less than t. The retrieval request is a mixture
of retrieving from the person slot-value pair with probability
w or the place slot-value pair with 1 —w. Although in the
tutorial w = .5, in our design, the value of w does not mat-
ter because f is equal for both attributes. On this basis, we
can simplify the model by setting the mixture probability to
w = 1 so that the person slot-value pair is always used as the
retrieval request. We represent a retrieval request similarly to
a chunk, which is defined as r = {(person,v)} where v is the
value associated with the person slot. Upon submitting the
retrieval request to declarative memory, a set R of candidate
chunks compete for retrieval:

R ={cm €M : c;y(person) = r(person)}

The number of chunks matching the retrieval request is f. On
a target trial, 1 chunk in R matches the stimulus on the person
and place slot-value pairs. The remaining f — 1 chunks match
only on the person slot-value pair. On foil trials, each of the
f chunks match only on the person slot-value pair.
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Activation

In ACT-R, each chunk has a memory activation value repre-
senting the log odds it will be encountered or needed (Ander-
son 2007). As activation increases, the probability and speed
with which the chunk is retrieved also increases. Activation
for chunk m is defined as

am:B+SAm+em (1)

where B is the base level constant, SA is the spreading acti-
vation term, € ~ normal(0, G) is activation noise, and G is the
standard deviation. We will use B to represent activation as-
sociated with relatively stable, asymptotic learning. Based on
the assumptions we introduced, we can simplify the spread-
ing activation term for the following two cases. The spread-
ing activation term for chunk ¢ which matches the stimulus
on both the person and place slot value pairs is defined as

SA. = %[y—ln(er1)}+%[v—ln<f+1)] =y=In(f+1) 2)

where 7 is the maximum association parameter. The other
case occurs when the chunk only matches on one slot-value
pair of the retrieval request, which is given by:

1
SA; = E[Yfln(er 1)] 3)

According to the ACT-R documentation, SA is truncated at
zero by default, stating that undesirable behavior may occur
with negative values (Bothell 2020, December 21, p. 287).
Negative values occur when f > ¢¥ — 1. However, to be con-
sistent with the theoretical interpretation of activation as log
odds, which ranges between —co and oo, we do not impose
any restrictions on SA. In ACT-R, retrieval time is the fol-
lowing inverse function of activation: t,, = Fe~“" where F is
the latency factor parameter with a default value of 1.

Response Mapping

As shown in Figure 2, the GGM uses the following response
mapping: if the retrieved chunk matches the stimulus, the
model responds “yes”; if the retrieved chunk does not match
the stimulus, the model responds “no”; if a retrieval failure
occurs, the model guesses “yes” with probability g.

Response Probabilities

Although the results we report below are based on Monte
Carlo simulations of ACT-R, we will express the model in
terms of approximate equations to provide a deeper under-
standing of the factors that determine the predictions. Using
Ue and y; as the expected activation for the cases based on
Equations (2) and (3), the probability of correctly responding
“yes” on a target trial can be approximated with the following
softmax function (Weaver 2008):

e,UC/G

eHe/o 1+ (f—1) .em/6+ef/6+

T/C

Pr(yes | target) =

e
e,UC/G—|—(f— l) -e:Ui/G—|—eT/G

g 4
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where s is the logistic scalar parameter, 6 = sv/2, and T is
the retrieval threshold. Accuracy initially decreases as f in-
creases because the the preponderance of chunks eligible for
retrieval (f — 1 out of f) do not match the target. However, in
the limit, responding is driven entirely by guessing because
activation becomes much lower than t. We can see this be-
havior in Equation (4) where the term for retrieval failures,
€%/%, has the largest exponent and thus determines the limit.
As f increases, the first term on the right approaches zero
whereas the second term approaches g. Setting Equation (4)
to h(f), we can state: limy_, h(f) = g.

On foil trials, the probability of a correctly responding “no”
is given by:

er,-/c

f-eti/o 4 et/

f-etilo

Pr(no | foil) = Fronlo Lol

(1—g)
)

Setting Equation (5) to z(f), the limiting behavior of the
GMM is lim¢_,ez(f) = 1 — g based on the same logic used
for target trials.

Simulation Study

In this section, we analyze the predictions of two special cases
of the GMM: the fan effect model from the tutorial, and an
extension of the tutorial model with noise added to memory
activation and the retrieval threshold. Table 1 lists the param-
eter values used for both submodels. For each combination of
parameters, we repeated the simulation 5,000 times to ensure
that stable predictions were generated.

Table 1: Parameter symbols, their descrip-
tions, and values used in the submodels: tu-
torial model (TM), tutorial model plus noise

(TM+N).
parameter description ™ TM+N

B base level constant 0 1.5

T retrieval threshold 0 0,2
Y max associative strength 1.6 1-4
s activation noise 0 0.2
F latency factor 0.63 1

g guess yes 0.5 0.5
tor non-retrieval time .845%  845*

*0.050 seconds is added for guessing.
Tutorial Model (TM)

The ACT-R Tutorial Unit 5 model for the fan effect (TM)
is a special case of the GMM with parameter values speci-
fied in Table 1. One important characteristic of the TM is
that retrieval time is deterministic because s = 0. In the tuto-
rial, specifying a guessing process was unnecessary because
the maximum fan size of 3 ensured that all a,, > tT. How-
ever, a guessing process must be incorporated into the model
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to handle retrieval failures at larger fan sizes, which incurs an
additional overhead of .050 seconds. Incorporating the guess-
ing process requires adding two production rules with noisy
utility values selected to produce the desired guessing proba-
bility. We assume that guessing is unbiased (i.e., g = .50).

The TM predicts an instantaneous drop in accuracy from
100% to 50% when fan size forces activation below the re-
trieval threshold. Rounding to the next integer, this occurs at
f = 4 with the specific parameters in Table 1. In general, the
shift in accuracy occurs on target trials when

f>erthr g (6)

and on foil trials when

£ otRB)

@)
RT predictions are also affected by an abrupt shift from re-
trieving chunks to retrieval failures. In Figure 3, RT increases
with fan size on both target and foil trials until activation
decreases below T at f = 4. When f > 4, retrieval failures
trigger a guessing process that produces the same constant
RT for correct and incorrect responses regardless of increases
in f. In general, the switch to guessing occurs when Equa-
tion (6) and Equation (7) are true, in which case the predicted
RT becomes Fe™* + 1 + .05 seconds regardless of increases
in f. In addition, when f < 4, RTs for correct responses on
foil trials are greater than the RTs for the corresponding re-
sponses on target trials. The reason is that only one source
of spreading activation contributes to retrieved chunks on foil
trials whereas two sources contribute to retrieved chunks on
target trials.

target foil
m 66060000 6060606000
T 15
c
o
Q
o4
o Response
E13
— correct
c
9 40 incorrect
51
o
[0)
o 1.1

1234567891 12345678910
Fan Size

Figure 3: RT predictions of the TM model paneled by target
and foil trials.

Tutorial Model Plus Noise (TM+N)

The TM suffers from the following limitations: (1) RTs are
unrealistically deterministic, and (2) accuracy drops instan-
taneously from 100% to 50% once activation decreases be-
low t. In light of these limitations, we investigate a less re-
strictive special case of the GMM that we term the Tutorial
Model Plus Noise (TM+N). The TM+N differs from the TM
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in one important way: noise is added to both memory acti-
vation and the retrieval threshold. Adding noise to activation
and the retrieval threshold improves the model in two ways.
First, the TM+N predicts a distribution of times for retrievals
and retrieval failures rather than a deterministic time. Given
that human RTs are variable, some have argued that adding
noise to the retrieval threshold makes the model more plau-
sible (Weaver 2008; Nicenboim and Vasishth 2018). Second,
the TM+N predicts a gradual decrease in accuracy as a func-
tion of fan size rather than an immediate drop from 100% to

50%.
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Figure 4: The probability of a correct response for trial types
across fan sizes for TM+N as a function of T and 7 pair.
Note that the x-scale from 1-50 is stretched to prevent over-
plotting.

Four noteworthy patterns for accuracy can seen in Fig-
ure 4. First, all other things being equal, accuracy is higher
for larger values of y. Second, on target trials, accuracy is
a non-monotonic function of fan size, beginning above the
asymptote at g = 0.50 and decreasing below g = 0.50 be-
fore increasing to g = 0.50. If activation is sufficiently larger
than T, accuracy will decrease to zero before converging on
the asymptote. Third, on foil trials, accuracy starts high and
decreases towards the asymptote at 1 — g = .50 as fan size
increases. Fourth, the speed with which the trends change
increases with smaller differences between y and T. In other
words, guessing dominates responding sooner when activa-
tion begins closer to the retrieval threshold.

Several important trends for RTs are present in Figure 5.
First, RT increases as a function of fan size, but stays within a
plausible range of approximately .90 to 1.6 seconds. Second,
unlike the TM, the TM+N shows smooth curves for correct
and incorrect RT's rather than an abrupt change from correct to
incorrect RTs. Third, as expected, RTs were faster for higher
values of y. Fourth, RTs are faster when T = 2 than when
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Practical Challenges

Testing the boundary conditions of spreading activation is
fraught with several practical challenges. One challenge is
that the time complexity for completing the study phase is
quadratic (i.e., O(f?)) because the fan experiment requires
at minimum 2 - f2 pairs. Consequently, the duration of the
study phase will quickly become impracticable as fan size in-
creases. For example, suppose subjects must complete b prac-
tice blocks to reach a target learning criterion. Suppose fur-
ther that each pair will require ¢t seconds on average to study.
Thus, the learning phase will require fygq =¢-b-2- f2 sec-
onds to complete. Figure 6 shows the duration of the study
phase as a function of f and b with = 2 seconds. Depending
on b, the duration of the study phase ranges between approx-
imately .7 and 2.1 hours for f = 25, and quickly increases to
arange of 11 to 33 hours for f = 100.

A second challenge is counteracting memory decay by in-
creasing practice blocks. As shown in Figure 7, the time be-
tween consecutive presentations of the same word pair grows
in a non-linear fashion with respect to fan size. With a
fan size of 25, the time difference between presentations is
nearly .70 hours which poses difficulties for learning. As fan
size increases, so will the number of practice blocks required
to counteract increasing amounts of memory decay between
consecutive presentations of the same word pair.

The test phase, by contrast, offers more flexibility because
it is not necessary to test the entire stimulus set. Instead,
one could sample a random subset for testing. Although this
would reduce the duration of the test phase and mitigate the
effects of decay, it would come at the cost of lower statistical
power.
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Figure 6: Study time as a function of fan size and the num-
ber of practice blocks.

Based on our analysis, it is clear that increasing fan size be-
yond 10-15 in a single experimental session would become
prohibitively difficult. One way to increase fan size beyond
10-15 is to distribute practice across multiple sessions. Al-
though using multiple practice sessions would make the time
of a single session manageable, it suffers from inter-session
decay effects and the potential for attrition. It is worth not-
ing that researchers would likely vary fan size across several
values to test the functional form of the fan effect, in which
case the time demands would be even greater. For example,
an experiment with fan sizes 2, 5, and 10 would require a one
hour study phase assuming ¢ = 2 seconds, b = 3, and an equal

32f%tb _ 3210223 _
602 602

number of pairs per fan size: 1 hour.

Discussion

Previous research has supported ACT-R’s predictions for the
fan effect within a small range of fan size. However, little is
known about how ACT-R’s predictions scale to ecologically
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Figure 7: The difference in hours between two consecu-
tive times a pair is studied. Medians are depicted as points,
the interquartile ranges depicted as whitespace around the
median, and minimum and maximum values at the outer ex-
tremes of the bounding lines.

valid domains in which fan size is likely large. In light of this
gap in the literature, we set out to accomplish two goals: (1)
to analyze the predictions of ACT-R at an ecologically valid
range of fan size, and (2) to assess the practical challenges
with studying the fan effect within ecologically valid param-
eters.

In service of the first goal, we analyzed the properties of
a general guessing mixture model (GMM), with an empha-
sis on the two special cases: the tutorial model (TM) and the
tutorial model plus noise (TM+N), an extension of the TM
with noise in the retrieval process. Across a broad range of
conditions, three findings emerged: (1) RT stayed within a
plausible range (.9 - 1.6 seconds) despite low memory acti-
vation at high fan size, (2) RT decreased with increases in
the maximum association parameter, and (3) accuracy even-
tually reaches an asymptote equal to the guessing parame-
ter, g, on target trials, and 1 — g on foil trials. The TM suf-
fered from two limitations due to its assumption that mem-
ory retrieval is deterministic: (1) unrealistically deterministic
RTs, and (2) instantaneous switching from perfect accuracy to
guessing. Adding noise to the retrieval process to produce the
TM+N eliminated these limitations. Interestingly, the TM+N
can produce non-monotonic behavior where accuracy drops
below the asymptote—sometimes as low as 0% accuracy—
before increasing to the asymptote.

Our analysis revealed that the time complexity for running
a fan effect experiment is quadratic, meaning that the time de-
mands quickly become prohibitive as fan size increases. This
is exacerbated by the fact the time between consecutive pre-
sentations of the same study pair also grows quickly with fan
size, leading to substantial decay. Additional study blocks
would be needed to counteract memory decay during increas-
ingly long study sessions, putting tests at large fan size even
further out of reach.

One of the most interesting findings from our analysis is
that accuracy drops to guessing levels somewhat quickly un-
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der a wide range of parameter settings. The primary factor
in determining how quickly accuracy drops is the difference
between activation and the retrieval threshold. As this differ-
ence decreases, accuracy decreases more quickly. Given that
the predictions depend on this relationship, it is necessary to
empirically test ACT-R at large fan sizes. As our analysis re-
vealed, doing so will be challenging and there are practical
limits to the maximum fan size that can be tested. Nonethe-
less, testing ACT-R at larger fan sizes—even if only as large
as 10 or 20—will be important in assessing ACT-R’s robust-
ness, and determining ACT-R’s scalability in practical situa-
tions with large knowledge domains.
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Abstract

We compare the qualitative predictions of an existing quantum
model and a novel multinomial processing tree (MPT) model
of the interference effect using parameter space partitioning
(PSP). An interference effect occurs when categorizing a stim-
ulus changes the marginal probability of a subsequent deci-
sion, leading to a violation of the LOTP. The PSP analysis re-
vealed that our MPT model can produce the same qualitative
patterns as the quantum model. Further analysis, however, re-
vealed that the models differ in several important ways. First,
a larger volume of the MPT model’s parameter space produces
a smaller number of interference effects compared to the quan-
tum model. Second, the distribution of volume across patterns
is more diffuse for the MPT model, indicating it is more flexi-
ble than the quantum model. We discuss limitations and future
directions.

Keywords: Multinomial processing trees; Quantum cogni-
tion; Interference effects; Categorization; Model flexibility

Introduction

An interference effect occurs when an action or judgment
changes the marginal probability of a subsequent deci-
sion (Wang & Busemeyer, 2016; Busemeyer et al., 2011).
One reason interference effects are interesting from a the-
oretical perspective is that they violate a law of classical
probability theory (CPT) called the law of total probabil-
ity (LOTP). Adherence to the LOTP means that for deci-
sion D and set of categories {C;};cs, the marginal distribu-
tion of D is given by Pr(D) = Y% ,Pr(D | C;)Pr(C;). Pre-
vious research has demonstrated that categorizing face in-
terferes with the subsequent decision to attack, such that
Pr(D) # Y7 Pr(D | C;)Pr(C;) (Wang & Busemeyer, 2016;
Busemeyer et al., 2011).

Interference effects present a challenge for many models
that are based on CPT because they violate the LOTP. For
example, two models based on CPT—a Markov model and a
signal detection model—are unable to account for the entire
pattern of interference effects that have been observed empir-
ically (Wang & Busemeyer, 2016). By contrast, a quantum
model called the belief-action entanglement (BAE) model
provides an account of the interference effect (Wang & Buse-
meyer, 2016). The reason that the BAE model is successful in
accounting for interference effects is that the less restrictive
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axioms of quantum probability theory allow for the violation
of the total law of probability.

Our primary goal is to demonstrate as a proof of con-
cept that a model based on CPT can produce interference
effects. Specifically, we show that a multinomial processing
tree (MPT; Riefer & Batchelder, 1988) composed of a catego-
rization process, a category revision process, and a decision
process is sufficient to produce interference effects. Our sec-
ond goal is to compare the qualitative patterns of interference
effects that the new model and the BAE model can produce.
Understanding the prediction space of a model is important
for understanding its behavior, assessing flexibility, and iden-
tifying diverging predictions between different models. An
overly flexible model provides a less persuasive account of
the data than a less flexible model (Roberts & Pashler, 2000).

The remainder of this article is organized as follows. In
the next section, we describe the categorization-decision
paradigm used to study interference effects. Next, we pro-
vide a brief overview of the BAE quantum model of interfer-
ence effects. We then introduce a new MPT model which can
also produce the empirical pattern of interference effects. We
compare the qualitative patterns of interference effects each
model can produce using a method called parameter space
partitioning (Pitt et al., 2006). We conclude with a discus-
sion of the limitations of the proposed model and the need
for a unified account of interference effects, order effects and
other phenomena based on CPT.

Categorization-Decision Paradigm

One popular paradigm for studying interference effects is the
categorization-decision sequential choice paradigm (Wang &
Busemeyer, 2016). Prior research with this paradigm has
demonstrated that inclusion of an explicit categorization stage
interferes with subsequent decision making (Wang & Buse-
meyer, 2016). On each trial, subjects are presented with a
face and must decide whether to attack or withdraw. Each
face is either a good guy, who is likely to be friendly, or a
bad guy who is likely to be hostile. Although subjects do
not know the category associated with each face (good vs.
bad), they can use facial features, such as width, as cues to
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aid in the decision process. For simplicity, we define type-b
and type-g faces as faces most likely to be in the bad or good
category, respectively. The extended paradigm involves three
conditions (Wang & Busemeyer, 2016). In the decision-only
condition (d), subjects make a single decision: to attack or
withdraw from each face. In the categorize and decide condi-
tion (cd), subjects categorize each face as good or bad before
proceeding to the attack/withdraw decision. In the third con-
dition (xd), subjects are given the true category of each face
prior to making a decision.

According to many models based on CPT, the marginal
probability of attacking (irrespective of category member-
ship) should be equal in each condition as required by the
LOTP, which states:

Prg(A=al|F=x)=
Preg(A=a|F =x,C=g)Prq(C=g|F =x)+
Preg(A=a|F =x,C=b)Prog(C=b|F =x)

ey

where random variables A, F' and C represent the action, fa-
cial feature, and category, respectively. Possible actions are
a for attack and w for withdrawal; possible values for facial
feature are tb for type-b and tg for type-g, and possible cat-
egories are b for bad and g for good. Each probability state-
ment is subscripted by its condition; for example, cd is the
categorize and decide condition. The left-hand-side repre-
sents the case in which no category judgment is made, and the
right-hand-side represents two possible cases—one in which
the face is categorized as bad, and another in which the face
is categorized as good. Because good and bad are mutually
exclusive and exhaustive states of the world, the probability
of each state should sum to the probability in which neither
state is known. If this equation is true, the LOTP holds, and
no interference effect occurs. However, if the LOTP does not
hold, it follows that the act of categorizing the face interferes
with the subsequent decision.

An example of a typical interference effect pattern can be
found in Table 1. The pattern is typified by interference ef-
fects of approximately equal magnitude but opposite direc-
tion in the xd condition, a positive interference effect for type-
b faces in the cd condition, and the absence of an interfer-
ence effect for type-g faces in cd condition. This asymmetri-
cal pattern in cd has been challenging for CPT models, such
as signal detection and Markov models, to predict (Wang &
Busemeyer, 2016).

Table 1: Interference effects reported in Experiment 2
of Wang & Busemeyer (2016). Values are computed as the
difference of the left and right hand side of Equation 1.

xd
type-g
-0.03

cd
type-b

0.04

type-b
0.03

type-g
0.00
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Belief-Action Entanglement Model

The belief-action entanglement (BAE) model is a quantum
model of interference effects (Wang & Busemeyer, 2016).
Importantly, the axioms on which quantum models are based
allow for the violation of certain rules in classical probabil-
ity, such as the LOTP. In the BAE, beliefs are represented
by four orthornormal basis vectors corresponding to the four
combinations of category (good vs. bad) crossed with action
(attack vs. withdraw). Prior to making a decision, a person is
in an indefinite state called a superposition, which is a linear
combination of the four basis vectors.

During the deliberation process, a person’s indefinite state
evolves according to a wave function with different potentials
to attack or withdraw. The decision dynamics are governed
by four utility parameters which represent the utilities of at-
tacking under different conditions. For example, pg p is the
utility of attacking a type-g face that has been categorized
as bad. The utility parameters are are assumed to be sym-
metric for type-g faces: uyy o = —p . However, for type-b
faces, the utilities can be asymmetrical, which allows inter-
ference to occur. In the d and cd conditions, entanglement
aligns beliefs and actions to be consistent with each other. A
parameter, Y, controls the degree of entanglement as well as
its direction. Importantly, the entanglement and the utility
parameters interact to produce interference effects. An inter-
ference effect will occur whenever the entanglement param-
eter is nonzero and the utility parameters for a given feature
type (e.g., type-b) are asymmetrical (e.g., tpg p 7 —Hib,o). The
BAE also includes a parameter j, which represents the proba-
bility of categorizing a face into its most likely category (e.g.,
type-g categorized as good).

Judgment Revision Model

We developed a novel multinomial processing tree (MPT)
model of the categorize-decide paradigm called the Judgment
Revision model (JRM). Although the JRM is based on CPT, it
can produce interference effects under specific conditions. A
MPT characterizes how latent cognitive processes map onto
categorical responses which follow a multinomial distribu-
tion (Riefer & Batchelder, 1988). As the name implies, MPTs
are organized as a tree-like structure in which nodes represent
cognitive states or processes and branches that connect nodes
represent the transition from one cognitive state or process
to another. Each branch is associated with a parameter rep-
resenting a transition probability between cognitive states or
processes. A series of transitions ultimately terminates at a
response node representing a specific response category. The
probability of following a specific path to a response node
(i.e., a series of connected branches) is computed as the prod-
uct of transition probabilities. In a MPT, several paths can
terminate at a response node representing the same response
category; in this case, the marginal probability of a specific
response is the sum of all path probabilities linked to the re-
sponse category.

The JRM assumes interference effects emerge from the in-
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teraction of three cognitive processes. The first cognitive pro-
cess is the decision to attack a face, which is represented by
parameter a. The probability of attacking depends on both
the face type and the category of the face, leading to the use
of two indices: (1) the first index represents the feature type
(tg for type-g and tb for type-b), and (2) the second index rep-
resents the category (g for good and b for bad). The second
cognitive process is the categorization of a face as good or
bad. The parameter j represents the probability of categoriz-
ing a face into its most likely category (e.g., type-g as good).
The third cognitive process is the decision to continue with
the initial category judgment or to revise it, which is captured
by parameter c. With probability ¢, a person is certain in the
initial category judgment and continues to the decision pro-
cess without revising the initial category. With probability
1 — ¢, a person is uncertain in the initial category judgment
and revises it from good to bad (or vice versa) before contin-
uing to the decision process. As we detail later, if one can
assume that certainty in the categorization (i.e., ¢) can vary
across some conditions, the JRM can produce the observed
interference effect pattern.

Predictions

Category Given Condition In the xd condition, subjects
are given both the feature and the category cues prior to mak-
ing a decision to attack or withdraw. Parameters j and ¢ play
no role in this condition because the correct category infor-
mation is provided, thus leading to simplified equations. The
probability of attacking a type-b face in category b is:

Pryg(A=a|F=tb,C=b)= Aib -

The probability of attacking a type-b face in category g is:
Pryg(A=a|F =tb,C=g) =apy,

The probability of attacking a type-g face in category b is:
Prxd(A =a | F=tg,C= b) =g b

The probability of attacking a type-g face in category g is:
Pryg(A=a|F =tg,C=¢) =agy,

To compute the marginal probability of attacking in the xd
condition, it is necessary to multiply the conditional attack
probabilities by the objective category probabilities, p. For
this, we assume that p is the same for both b and g faces; thus
p is the probability that a face belongs to the most probable
category (e.g., type-g is in category g). Formally,

p=Pr(C=g|F=tg)=Pr(C=b|F =tb).

The marginal probability of attacking a type-g face in the
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Figure 1: Example trees for the cd condition. The top tree
represents the categorization process for a type-b stimulus in
the cd condition. The bottom tree represents the decision pro-
cess for a type-b stimulus categorized as bad

decide
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bad
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xd condition is:

Pryg(A=a|F =tg)

Z Prya(A=a,C=n|F =tg)
ne{g,b}

Z Pryg(A=a|C=nF=tg)Pr(C=n|F =tg)
ne{g.b}

=p-aggt+(1—p) agp.

Similarly, the marginal probability of attacking a type-b face
in the xd condition is:

Pryy(A=a|F =tb)=p-app+(1—p)-aw,

Categorize and Decide Condition In the c¢d condition,
subjects are instructed to categorize the face before deciding
whether to attack or withdraw. The first tree in Figure 1 illus-
trates the categorization process for a type-b face. In the first
branch, a type-b face is categorized as good with probability
1 —j. In the second branch, a type-b face is categorized as
bad with the complementary probability j. The probability of
categorizing a type-b face as good is given by:

Prg(C=g|F=th)=1—
The probability of categorizing a type-g face as good is:
Prg(C=g|F=tg)=

After categorizing the face, a person must decide to attack or
withdraw. As shown in Figure 1, there are two paths lead-
ing to a decision to attack. In the first path, a person is cer-
tain with probability ¢ and continues with the initial category
judgment of bad. The face is then attacked with probability
aw p- In the second path, a person is uncertain with probabil-
ity 1 — c and revises the initial category judgment from bad to
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good. Next, the face is attacked with probability ay, o. This
process can be represented mathematically with the following
equation:

Preg(A=a|F=tb,C=Db)=c-app+(l—c)-am,

One important point to note is that the JRM does not re-
quire certainty in category judgments to be equal in all condi-
tions. In particular, we assume that c is higher in the cd con-
dition in which a type-b face is categorized as good. The ¢ pa-
rameter in this condition is denoted as ¢y to distinguish it from
c in the other conditions. Importantly, when c; > ¢, the JRM
can produce a positive interference effect for type-b faces in
the cd condition. Without this assumption, the JRM can only
produce interference effects in the xd conditions. Justification
for this assumption can be found in Table 2 where certainty is
measured as the degree to which conditional attack probabili-
ties are close to the boundaries O or 1. As expected, we tend to
see more certainty in xd because all information is provided.
However, this pattern is reversed for type-b face categorized
as good in the cd condition. Thus, we assume ¢, > c¢. The
probability of attacking a type-b face categorized as good is:

Prcd(A =a | F=tb,C= g) =CL-atbg =+ (1 — Ck) “db p-
The probability of attacking a type-g face categorized as bad
is given by:

Preg(A=a|F=tg,C=b)=c-agp+(l—c) -

The probability of attacking a type-g face categorized as good
is given by:

Prg(A=a|F=tg,C=g)=c-age+(1—c) agp.

Table 2: Conditional attack probabilities reported in Wang &
Busemeyer (2016) Experiment 2 .

Good Bad
type-g type-b type-g type-b
Certain (xd) 0.28 0.40 0.58 0.69
Uncertain (cd) 0.33 0.37 0.53 0.61

The marginal probability of attacking is found by combin-
ing the equations for category judgment and decision pro-
cesses. The marginal probability of attacking a type-b face
in the c¢d condition is given by:

Prog(A=a|F=tb) = (1—j)-[ck-awg+ (1 —cx) - aw]
Fj-le-awp+(1—c)-awgl
The marginal probability of attacking a type-g face in the
cd condition is given by:
Prg(A=a|F=tg)=j [c-agg+ (1 —c) agp)
(=) [cragp+(1=c) - ag]
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Decision Only Condition In the d condition, subjects sim-
ply make the decision to attack or withdraw from each face.
The JRM assumes that an implicit categorization precedes the
decision to attack. The marginal probability of attacking a
type-b face in the d condition is given by:

PryA=a|F=tb)=(1—j) [c-ape+ (1 —c) app)
+j-lc-app+(1—c)-apgl.

The equation above provides four paths leading to a deci-
sion to attack. The first two paths begin with categorizing a
type-b face as good with probability 1 — j. In the first path, a
person is certain in the category judgment with probability ¢
and continues without revision. From there, a person attacks
with probability ap . In the second path, a person is uncer-
tain in the initial category judgment with probability 1 —c and
revises it from good to bad. From there, a person attacks with
probability ay, 5.

The other two paths begin with categorizing a type-b face
as bad with probability j. In the third path, a person is cer-
tain in the category judgment with probability ¢ and continues
without revision. From there, a person attacks with probabil-
ity agp, . In the fourth path, a person is uncertain in the initial
category judgment with probability 1 — ¢ and revises it from
bad to good. From there, a person attacks with probability
ap,g. The marginal probability of attacking a type-g face in
the d condition is given by:

Prd(A:a | F :tg) = [C'atg,ng(l *C)’atg,b}
+(1=j)-[c-agp+ (1 —c)-aggl-

Parameter Space Partitioning

We found that the JRM and BAE provide similar quantitative
fits to the data, so we focus instead on comparing their pre-
diction spaces. A model that predicts any pattern provides
little evidence for a theory, no matter how well it fits a partic-
ular data set (Roberts & Pashler, 2000). Thus, it is important
to know the range of patterns a model can and cannot pro-
duce. For this reason, we compare the prediction space of
both models using a qualitative model comparison method
called parameter space partitioning (PSP; Pitt et al., 2006).
PSP explores the parameter space of a model to identify re-
gions associated with different qualitative data patterns. In
contrast to model fitting which assess the quantitative fit of
a model to a specific data set, the goal of PSP is to under-
stand the behavior of the model across its entire parameter
space. In addition, PSP uses volume estimation to determine
the prevalence of various patterns in the parameter space.

In total, the paradigm can produce a maximum of 81 possi-
ble interference effect patterns. Specifically, the interference
effect is computed as the difference between the left hand and
right hand side for the definition of the LOTP in Equation 1.
The resulting difference yields three types of interference ef-
fects: positive, negative and absent (i.e. a approximate differ-
ence of zero). An interference effect is computed in four con-
ditions by crossing face type (type-g,type-b) and condition
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(xd,cd). Thus, in total, there are 3% = 81 possible patterns
in the present paradigm. Our criteria for classifying an effect
as absent was a small effect: |Pry(A = a|F = x) —Pr;(A =
alF =x)| <0.01, where x € {tg,tb} and z € {xd, cd}.

We analyzed two versions of the BAE and the JRM:

(1) a relatively constrained version denoted by subscript
¢, and (2) a relatively unconstrained version denoted by sub-
script u. In the JRM,, we constrained the judgment certainty
parameters to be equal: ¢y = c¢. In the JRM,,, we allowed
¢k > c. In the BAE, model, we constrained g = —pig ¢ as
described the original paper (Wang & Busemeyer, 2016). In
the BAE, model, no such constraint was imposed. Except
where constraints apply, the allowable parameter ranges were
VAS [07 1] and Hib b Htb,g > Mtg,g s Mg, b> Y € [_272] in the BAE, and
[0,1] for all parameters in the JRM.

Results
Flexibility

One way to assess flexibility is to count the number of pat-
terns a model can produce. As expected, Table 3 shows that
the constrained BAE, model produced 33 = 27 patterns be-
cause it cannot produce interference effects for type-g faces
in cd. By contrast, the BAE, can produce all 81 possible pat-
terns. As expected, the JRM, only produced the 9 interfer-
ence effects in xd condition. However, the JRM,, can produce
the same 27 patterns as the BAE, model.

One limitation with using pattern counts to assess flexi-
bility is that it does not take into account the volume of re-
gions associated with a data pattern. Although two models
may produce the same number of data patterns, one model
may concentrate most of its volume on a small subset of pat-
terns whereas a highly flexible model might produce a uni-
form distribution of volume across patterns. We used the Gini
coefficient (Gini, 1921)—an economic measure of income
inequality—to better quantify the flexibility of the models. A
value of 0 corresponds to maximal flexibility (i.e., a uniform
distribution) whereas a value of 1 indicates minimal flexibil-
ity (i.e., all volume assigned to one pattern). As shown in
Table 3, the Gini coefficient varies markedly across models,
but all models are far from maximal flexibility. Although the
JRM_. is the least flexible model, it cannot account all empir-
ical patterns (e.g, it cannot produce an interference effect in
cd for type-b faces). In agreement with the pattern count, the
BAE, model is the most flexible model. Although the BAE,
model and the JRM,, model produce the same patterns, the
BAE, model is less flexible.

Volume

Next, we analyze the volume of regions associated with dif-
ferent patterns, which are normalized as a percentage of the
volume for the entire parameter space. One challenge with
comparing the volume of patterns between the models is the
large number of patterns (81). Our solution to this problem
is to analyze volume according to three factors: the type of
interference effect (positive, negative, or absent), the number
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Table 3: A summary of the qualitative pattern of interference
effects produced by the BAE and JRM models. 7 is the num-
ber of possible patterns for the model. Gini is a coefficient of
inequality. Volume % for patterns with at least one positive
interference effect, at least one negative interference effect,
and at least one absent effect.

model n  Gini positive negative absent
BAE. 27 .868 80.1% 76.6% 100.0%
BAE, 81 .656 81.4%  83.8% 72.3%
JRM, 9 910 58.1%  56.1% 100.0%
JRM,, 27 791 73.0% 73.2% 100.0%

of interference effects, and the condition.

Table 3 shows the volume associated with positive, neg-
ative and absent interference effects. For example, a pat-
tern was considered positive if at least one interference ef-
fect in the four conditions was positive. Volume for posi-
tive and negative interference effects were similar within each
model. Volume for positive and negative interference effects
was higher for BAE models compared the JRM models. The
volume for at least one absent interference effect was high
across all models.

Across all models, the volume estimates in Table 4 indi-
cate that volume for interference effects in the xd condition
was larger than for the cd condition. The volume in the xd
condition was greater for the BAE models compared the the
JRM models. As expected, the JRM, did not produce any in-
terference effects in the cd condition. Only the BAE, model
had sufficient flexibility to produce interference effects in the
cd condition for type-g faces.

Table 4: Volume % as a function of condition and face type.

xd xd cd cd
model type-b  type-g  type-b  type-g
BAE., 94.6% 97.1% 44.7% 0.0%
BAE, 94.1% 954% 463% 46.3%
JRM, 72.6% 71.3% 0.0% 0.0%
JRM,, 702% 70.4% 63.3% 0.0%

Table 5 shows the estimated volume as a function of num-
ber of interference effects (positive or negative) for each
model. As expected, the JRM, produced a maximum of two
interference effects; the JRM,, and the BAE, produced a max-
imum of three interference effects, and the BAE,, produced a
maximum of four interference effects. Generally speaking,
the JRM models tend to predict a smaller number of interfer-
ence effects than the BAE models.

Discussion

Our goal was to develop a MPT model of the interference
effect and compare its qualitative predictions to those of the
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Table 5: Volume % as a function of number of interference
effects for each model.

interference

offocts BAE. BAE, JRM. JRM,
0 0.6% 0.8% 142% 9.4%
1 51% 50% 27.7% 18.5%
2 51.8% 33.1% 58.1% 30.8%
3 42.6% 334% 00% 41.3%
4 0.0% 27.7% 00%  0.0%

BAE quantum probability model. Our MPT model, termed
the JRM, is based on three cognitive processes: a catego-
rization process, a category revision process, and a decision
process. Although the JRM is based on CPT, it can produce
interference effects if the judgment certainty can differ across
conditions.

We used PSP to compare the models in terms of the data
patterns they can and cannot produce. This is important be-
cause a model’s ability to account for an observed data pat-
tern is less impressive if it can predict many rather than few
patterns (Roberts & Pashler, 2000). Our PSP analysis pro-
duced three noteworthy findings. First, an unconstrained ver-
sion of the BAE can produce all qualitative interference effect
patterns, and the JRM with constraints fails to produce the
observed pattern of interference effects in the cd condition.
Second, although the unconstrained JRM and the constrained
BAE produce the same patterns of the interference effect, the
BAE is less flexible because the volume across patterns is
less diffuse compared to the JRM. Third, the volume analysis
indicates that the JRM tends to generate fewer interference
effects compared to the BAE. In summary, the JRM shows
promise as an alternative to the BAE, as it can also produce
the empirical pattern of interference effects. However, the
BAE has the advantage of being less flexible according to the
PSP analysis.

Limitations

We note a few limitations. One limitation is that PSP implic-
itly assumes the prior distribution across parameters is uni-
form. An extension of PSP incorporating information about
the prior probability of parameters may yield different con-
clusions. The JRM has at least one limitation. In contrast to
the BAE, the JRM does not generalize to experiments with
different reward rates or associations among features and cat-
egories because it uses a parameter for each decision proba-
bility. One possible solution to this problem would be replac-
ing the attack probability parameter a with a utility function
mapping stimulus inputs to decision probabilities.

Conclusion

One advantage of quantum cognition is its ability to account
for a wide range of phenomena, such as order effects and in-
terference effects, with similar mechanisms (Busemeyer et
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al., 2011). A unified account of these phenomena based on
CPT has yet to emerge. Instead, modeling efforts, including
this one, have focused on demonstrating that models based
on CPT can produce effects that are relatively easy for mod-
els of quantum cognition to produce. Recently, for example,
several CPT-based models of order effects (which violate the
commutative law of CPT) have been proposed, including a
MPT model (Kellen et al., 2018), an ACT-R model (Fisher
et al., 2021), and a Bayesian network model (Moreira & de
Barros, 2021). The wide variety of models in these demon-
strations indicates that the current challenge is not one of fea-
sibility. Indeed, models based on different assumptions can
produce the effects. Instead, this lack of consensus points to
a deeper theoretical challenge in providing an alternative uni-
fied account of order effects, interference effects, and other
phenomena. A viable alternative to quantum cognition must
ultimately seek to provide a unified account. Nonetheless,
developing an alternative model of interference effects is a
necessary first step in this direction.
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Introduction

Human beings develop in a highly complex social and
physical environment. Behaving appropriately in this
environment requires learning detailed action sequences,
where intermediate actions do not provide obvious
instrumental rewards. Alongside a high degree of
general-purpose intelligence, humans have adapted to this
computational challenge through a deep reliance on learning
through the cultural transmission of information from
teachers or other social sources (Boyd et al., 2011; Mesoudi
et al., 2006). This deep cognitive adaptation is expensive,
requiring a large investment of each generation of humans
in providing for and teaching the subsequent generation, and
an extended period of childhood longer than that observed
in other animals (Gopnik, 2020). During this time, children
are both dependent on caregivers for resources, and
spending a large amount of energy on brain development.

Nevertheless, learning from expert demonstrators
obviates the need to engage in time-consuming and even
possibly dangerous exploration to discover solutions already
known by other members of society, and allows for cultures
to develop new tools and technologies by allowing its
members to build upon previous knowledge cumulatively
(Tennie et al., 2009).

Teaching provides many opportunities for learning
above and beyond serving as another source of information
for a learner. Because teachers are intentional agents, it is
possible to make strong assumptions behind the rationale for
their behavior, leading to stronger inferences about the data
than if it had been independently discovered (Shafto et al.,
2014). However, here we focus on a simpler phenomenon:
teachers tend to be more skilled, and observing an expert
demonstrator can improve learning by providing learners
with access to examples of success before they are able to
succeed themselves. Indeed, prior work has found that using
expert demonstrations to pretrain or guide exploration can
substantially improve learning speed and performance in RL
agents (e.g. Gulcehre et al., 2019; Zhang & Ma, 2018).

To investigate the benefits of expert demonstration, we
develop and test a simple grid world game in which an agent
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either learns through self-directed exploration, observation
of a pre-trained expert demonstrator, or a combination of
both of varying proportions.

Method

We implement a 10 X 10 grid world in which one agent,
two bushes, and one wolf are located at coordinates in
space. All the objects are randomly distributed throughout
the world. The agent and the bushes have a certain energy
level when they are instantiated. The agent’s action space
involves basic movements (up, down, left, and right) and
eating, each consuming energy to perform. When the agent
eats while adjacent to a bush, its energy level increases and
the bush’s energy level decreases. When an agent’s energy
level decreases to zero, the agent will ‘die’; bushes with an
energy level of zero no longer provide energy. Unlike the
agent and the bushes, the wolf has unlimited energy. It
intermittently hunts the agent with a predetermined action
policy. The agent is rewarded when it eats bushes and when
it survives for 50 turns, but it is punished when eaten by the
wolf or when it starves.

Model Architecture

The agent contains a deep Q-learning neural network
(DQN) that takes in the location and identity of nearby
objects as well as its own hunger level as its observation of
the world. Observations are first input into an LSTM
followed by a linear policy that outputs the estimated
Q-value of the five possible state-action pairs (four cardinal
directions plus eating). The agent also contains a replay
buffer that stores past experiences, either from self-directed
exploration or from a pre-trained expert demonstrator. After
each epoch, the neural network samples a batch of
multi-state game sequences, and updates its policy estimates
based on the rewards obtained in these states.

Experimental Conditions

We trained the agent for 200,000 games in one of five
conditions. Each game is initialized with varying agent
energy levels (between 15 and 100) and ends after 50 steps
or when the agent dies. Individual games sometimes include
a wolf, and sometimes do not. As a result, agents learn
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about games that have differing optimal policies for survival
(e.g. seek out food first, or avoid the wolf first).

We generated data for 5 agents, corresponding to
differing levels of experience received from a pre-trained
expert demonstrator. In Condition 1, the agent learns solely
through its own experiences of interacting with the
environment, and does not receive any expert
demonstration. In Conditions 2-5, a gradually increasing
proportion of the agent’s learning trials correspond to a
game played by an expert demonstrator (12.5%, 25%, 50%,
and 100%, respectively). Every 1000 epochs, the agent is
presented with 900 test games with an initial energy level of
15 in the grid world. We test agents’ performance by
recording the number of steps survived on the test trials.

Results and Discussion

To assess the final performance of the model, we conducted
a series of t-tests with Bonferroni correction for multiple
comparisons to evaluate the performance of each fully
trained model on 10000 new test games. We found that a
proportion of 25% expert trials had a better performance
than all other models (all p < .001), but also that models
mixing both learning strategies outperformed the two that
used only one or the other (all p <.001). Notably, the size of
the performance increase from 25% expert trials compared
to 100% expert trials (Cohen’s d = 1.08) and self-directed
learning (Cohen’s d = 1.40) were both very large.

— Self-Play

—— Pedagagical 100%

— Pedagogical 50%

—— Pedagogical 25%
Pedagogical 12.5%

turns

0 25000 50000 75000 100000

Epochs

125000 150000 175000 200000

Figure 1. Average turns survived by agents for
self-directed exploration (red), as well as 12.5% (yellow),
25% (purple), 50% (blue), and 100% expert demonstration
(green) conditions. Results are averaged over 5 model runs.
Shaded region indicates standard error value.

Overall, all pedagogical models substantially
outperformed learning from self-directed exploration alone.
Exposure to expert demonstrations led all agents to quickly
improve well beyond the maximum average survival of the
self-directed learning model. Nevertheless, not all forms of
demonstrations were equally valuable. For example, being
presented with only expert trials led agents to quickly stop
improving their performance, with a ceiling achieved after
15 turns. This outcome reflected highly robust learning of
how to avoid being eaten by a wolf, but an inability to
reliably generalize a policy that included eating from the
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bushes to avoid starvation. In contrast, while other agents
displayed a higher proportion of being eaten by a wolf, this
was traded off against an ability to use self-directed learning
to learn how to eat and thus survive longer on average.

Conclusions and Ongoing Research

These simulations suggest that learning from an expert can
provide an immediate advantage over learning from one’s
own error-prone first attempts, and that even small amounts
of expert guidance can provide a lasting boost to one’s total
learning (e.g. Gulcehre et al., 2019). Nevertheless, it also
shows that relying too heavily on an expert can limit one’s
learning—serving as a “double-edged sword” (e.g.,
Bonawitz et al., 2011) that limits one’s capacity for future
exploration. Instead, success requires balancing expert
knowledge with exploration, echoing the iterative
innovation process that is characteristic of human
cumulative culture (Tennie et al., 2009).

We are currently investigating how dynamically shifting
reliance on an expert can optimize its benefits. For example,
when one has little idea of the best action policy, heavily
drawing from an expert is highly beneficial; as one gains
more personal experience, however, relying on one’s own
innovations becomes progressively more advantageous.
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Introduction

Recent cognitive modeling research has been uncovering the
complex mechanisms whereby humans learn to combine
instruction and experience to acquire rapid and precise
complex skills (Anderson et al., 2019). Two key aspects of
the learning include the proceduralization of declarative
instructions (also known as “production compilation”) and
the progressive tuning of controllable movement properties
to environmental features that predict success in a given task
(i.e., internal model; see Anderson et al., 2019).

One promising way of exploring sensorimotor learning
during skill acquisition is to look at the details of motor
behavior. For instance, it has been shown that motor timing
and sequencing variability predicted skill acquisition in a
simplified version of the Space Fortress (SF) video game
(Gianferrara, Betts & Anderson, 2020, 2021). In this project,
we focus on action timing and action sequencing in a SF
video game instantiation with more complex dynamics called
YouTurn (see Anderson et al., 2019).

In SF YouTurn, players are flying a spaceship in a
frictionless environment while shooting missiles at a fortress
and avoiding shells. To navigate the spaceship, players use
four possible keypress actions: “Fire” (F — space bar), “Turn
Left” (L — A’ key), “Turn Right” (R — ‘D’ key), and “Thrust”
(T — ‘W’ key). To earn points, players accumulate fortress
kills over 40 games of 3 minutes. To do so, players need to
aim at the fortress and fire a sequence of 10 consecutive shots
with intershot intervals of at least 250 ms, and conclude each
game cycle with a final quick double shot (with an intershot
interval faster than 250 ms). Each fortress kill was rewarded
with 100 points, each fired missile cost 2 points, and players
lost 100 points for each ship death.

Keypress Chunks over the Games

The notion of motor chunking has been proposed as part of
motor skill learning to account for the progressive increase in
fluency and accuracy that is usually characteristic of skill
acquisition (Diedrichsen & Kornysheva, 2015). Specifically,
motor chunks can be thought of in terms of a hierarchical
representation of motor skills in which groups of consecutive
motor actions are fired collectively as motor units instead of
separately as serial actions (Beukema & Verstynen, 2018;
Diedrichsen & Kornysheva, 2015). Evidence for motor
chunking comes from motor learning experiments, such as
the serial reaction time task, in which participants’ behavior
progressively includes idiosyncratic sequential and temporal
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groupings, resulting in gradually higher response time
autocorrelation at early lags (Verstynen et al., 2012).

We explored the SF YouTurn video game dataset from
Anderson et al. (2019) with N = 29 and looked for evidence
of action chunking in terms of action sequencing and action
timing. Based on past experimental evidence (e.g., Sakali,
Kitaguchi & Hikosaka, 2003), we considered that groups of
two consecutive keypresses Ky and K, were more likely to be
“chunked” when their inter-press interval (IPI) was lower,
and when their relative frequency was higher. We thus
expressed chunk propensities as follows: p(chunk;) =

X (chunk;) N — Freq % (chunk;)
I ——, where X (chunk;) = TS We

computed this propensity for each of the 16 2-keypress
chunks over the 40 games.

Figure 1 depicts the progression of each 2-keypress chunk
propensity over the 40 games. Figure 2 depicts the average
keypress transition probabilities across all 16 chunks. The
main result is that as players acquired skills, they tended to
preferentially select chunks with a “fire” action while purely
navigational chunks became less frequent over the games.

Key 1

£ F o R T ]
e B B - T Key2
8_03 PSRV ey
002 F
= - L
(=% A -

0.1{4 —— - R
-5 0.0 S \ﬁ:}f“_‘,"j‘:‘ﬁ—kf LSy T
£ 0 10 20 30 400 10 20 30 400 10 20 30 400 10 20 30 40
o Game Number

Figure 1: Progression of all 16 2-keypress chunk
propensities over the 40 3-min. SF YouTurn games.
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Figure 2: SF YouTurn chunk probability network (created
in Cytoscape'). Estimated transition probabilities are shown
with edges. Thicker and redder edges are more probable.
Edge labels indicate Markov transition probabilities relative
to their respective source keypress nodes.
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In the context of the SF YouTurn video game, shots are
particularly important since points are awarded based on
participants’ ability to pace their “fire” keypress actions.
However, the game’s frictionless space and speed
requirements (i.e., ships get killed if they are too slow)
impose additional navigational constraints which must be
dealt with simultaneously. The results from Figures 1 and 2
suggest that participants increasingly bound shots with other
navigational keypresses as part of action chunks in order to
build up skill over the games.

This example of chunking is reminiscent of past incidental
learning work on artificial grammars in which participants
were asked to remember unfamiliar string sequences, and
unintentionally learned strings’ environmental statistical
regularities (Servan-Schreiber & Anderson, 1990; Perruchet
& Pacton, 2006). In such work, chunk formation and
hierarchical representational structures were shown to
provide an advantage in terms of memory consolidation and
recall during learning (Servan-Schreiber & Anderson, 1990).
Applied to motor skill learning, a growing body of evidence
suggests that elementary movements that are bound into
chunks may be retrieved faster and more accurately than
individually  selected movements (Diedrichsen &
Kornysheva, 2015; Beukema & Verstynen, 2018).

Motor Correlates of Skill Acquisition

We next broke down motor skill learning into separate
measures of action sequencing and action timing variability.
Following the methodology introduced by Gianferrara, Betts
& Anderson (2021), we plotted the entropy which measured
keypresses’ sequential variability in SF YouTurn. With 4
keys, there are 43 = 64 keypress triples?. The entropy was
computed as H(X) = — Y22, p;. log,p; and ranged from 0 to
6. We also plotted players’ action timing variability in terms
of the logarithmic coefficient of variation of the inter-shot
intervals (ISI) such that log CV (ISI) = log(a(ISI)/u(ISI))
where o (IST) refers to the standard deviation of the ISls, and
w(IST) refers to their mean. Figure 3 shows the progression
of skill in terms of players’ performance score (3a), action
sequential variability (3b), and shot timing variability (3c).
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Figure 3: a) Performance over time. b) Action sequencing
variability (Entropy) over time. ¢) Shot timing variability
(Log CV ISI) over time. Shaded areas indicate the S.E.M.s.
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Note that we filtered out games with no completed game
cycles. The current results show data from 1064 individual
subjects’ games (~92% of all game data).

2For purposes of visual illustration, we only represented 2-keypress
chunks on Figure 1. We expanded chunks’ size to include all
keypress triples for entropy computations based on the results
from past motor skill learning research (Ariani et al., 2021)
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We then averaged each of the three above measures within
subjects across all 40 games to investigate inter-individual
skill differences (see Figures 4a and 4b). The main result is
that lower action sequencing and shot timing variability are
correlated with higher scores.

a) b)
5 2000 r=-0.81,p<.001 F 2000 r=-0.79, p<.001
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E E 500
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Entropy Shot timing variability (log CV)

Figure 4: a) Action sequencing variability (Entropy) inter-
individual skill differences, b) Shot timing variability (log
CV ISI) inter-individual skill differences.

Predicting Skill based on Motor Behavior

Finally, we fit a linear mixed-effects model (LMEM) on
game data to assess each measure’s ability to predict skill
over the games. In R, the model was written as Imer(Score ~
Entropy + logCV + (1|Subject) + (1|GameNb)). Note that 8
observations out of 1064 observations (~ 0.75%) were
removed because of model residuals that were more than 3
SDs away from the mean and acted as high-leverage
observations. Another model was fit to inter-individual skill
data (across games) and was written as Im(Score ~ Entropy +
LogCV). Results from both models are shown on Table 1.
The main result is that lower measures of action sequencing
and shot timing variability significantly predict higher scores
across subjects and games.

Table 1: Predicting skill in the SF YouTurn video game.

Skill predictions in YouTurn
LMEM across games Inter-individual skills
95 % CI 95 % CI
(—631, 192) 130)
(—258, 174) 349)
0.87

Estimate Estimate
560"
216***

905" (

765***  (

1380,
1181,
0.76

Entropy
Log CV ISI
Adjusted R?

*p < .001; **p < .01 *p < .05

Conclusion

We showed that our measures of action timing variability and
action sequencing variability also predicted skill in a more
complex video game closer to the original Space Fortress
environment. This finding suggests that as players are
acquiring skills, they also learn to chunk actions which results
in more consistent and fluent motor behavior.
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Abstract

Accurately fitting cognitive models to empirical datasets
requires a robust parameter estimation process which is often
arduous and computationally expensive. A way to mitigate
this challenge is to integrate participant-specific and
efficient mathematical models such as a drift diffusion
model (DDM) into the parameter estimation process of
cognitive modeling. In this study, we exhibit a clear mapping
of the parameters outputted by DDM onto the declarative
memory parameters utilized in the cognitive architecture,
ACT-R. We show a fairly consistent recovery of simulated
ACT-R parameters using DDM and a successful application
in using this method to optimize ACT-R simulated fit to an
empirical dataset. Notably, we show that the DDM-derived
estimated parameters are individualized to the original
participant, providing a unique opportunity for parsing out
individual differences in cognitive modeling. This method
outlined here allows one to estimate ACT-R parameters
without the need to manually build and run an ACT-R model
while also allowing for neural contextualization of DDM
parameters.

Keywords: Drift Diffusion Model, Cognitive Architecture,
Computational models, Individual Differences

Introduction

A common challenge associated with cognitive modeling
is how to accurately capture individual differences within
the parameters that comprise these models. Parameter
estimation now relies on unfastidious and computationally
expensive methods such as manual parameter grid-
searches. Incorporating a statistically rigorous and
behaviorally-valid computational model such as a drift
diffusion model into the parameter estimation process of
ACT-R may allow for better empirically-informed ACT-
R models. Similarly, although DDM has been widely
replicated in behavioral paradigms and the outputted
parameters show distinct and replicable behavioral
correlates (Ratcliff & Tuerlinckx, 2002; Voss et al., 2004),
studies examining the neural substrates of the DDM
parameters have large variability in their results (Gupta et
al., 2022). Integrating DDM into a well-established
cognitive architecture such as ACT-R (Anderson, 2007)
would allow DDM parameters to have robust neural
correlate interpretations. Further, accurate ACT-R
parameter estimation would eliminate the need for the
modeler to manually build and run an ACT-R model to use
for neural or cognitive interpretation in the context of
declarative memory tasks, increasing the accessibility of
these methods to a wider array of non-modeler
researchers.
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ACT-R Declarative Memory

ACT-R is a well-established cognitive architecture that
includes a highly reliable model of declarative memory
(Anderson et al., 2004; Anderson, 1974; Kotseruba &
Tsotsos, 2020; Pavlik & Anderson, 2005). Declarative
memories or knowledge within ACT-R are encoded in
record-like  structures called chunks, representing
semantic memories. ACT-R’s declarative memory module
functions by making less used chunks harder to retrieve
over time through their assigned activations. Chunks are
selected on the bases of their activation, a quantity that
reflects the log odds that the chunk will be needed.
Specifically, the activation 4. of a chunk ¢ at time ¢ is
computed as:

A= Zi(ti-0 (1)

where ¢ represents the time of the i-th event in which ¢ was
encoded or retrieved. Retrieval of information from
memory can be viewed as a process of evidence
accumulation, where environmental or internal cues
contribute evidence to competing chunks within one’s
memory. These chunks are competing for retrieval and the
first chunk to accumulate enough evidence to be chosen,
crosses a “decisional threshold” and a response is initiated
(Anderson, 2007).

Drift Diffusion Model

A drift diffusion model (DDM; Ratcliff, 1978; Voss et al.,
2013) has been proposed to model a two-alternative
forced-choice task and is based on early models of the
continuous random walk process (Stone, 1960; Wald &
Wolfowitz, 1948). The DDM is based on several basic
assumptions: during a binary decision process,
information will accumulate at a continuous rate and this
accumulation process can be explained using a Weiner
diffusion process (Ratcliff & McKoon, 2008; Ratcliff &
Tuerlinckx, 2002). Information accumulation is
characterized by a constant systemic component with an
added component of normally distributed random noise.
This assumption of random noise is meant to emulate
repeated processing of the same stimulus or same type of
stimulus and explains the variance in response times and
erroneous response errors observed in empirical
reaction/accuracy distributions (Ratcliff & McKoon,
2008; Ratcliff & Tuerlinckx, 2002; Voss et al., 2013). The
decision process is terminated as soon as the systemic
counter accumulates information to the point of reaching



one of the two decisional thresholds. The basic model can
be depicted in Figure 1A.

A drift diffusion model is distinguished by its distinct
parameters estimated from empirical decision time
distributions. The first parameter, or drift rate (v) is
calculated through the average of the rate of evidence
accumulation from the start of the decision process
(beginning of evidence accumulation) until a decision is
made (evidence accumulator reaches either upper or lower
decisional threshold). Previous studies have shown that
drift rate can be interpreted as a measure of cognitive
speed and is affected by value associated with the stimulus
as well as the separation between choices (Bond et al.,
2018; Ratcliff & Frank, 2012). We are similarly able to
estimate the decisional threshold (a). The decisional
threshold represents the amount of evidence needed to
make a decision. A higher decisional threshold indicates a
larger distance between the lower and upper decisional
thresholds. Decisional threshold has been shown to highly
depend on a speed-accuracy tradeoff and is sensitive to
changes in instructions emphasizing speed over accuracy
or vice versa (Mulder et al., 2013). We are also able to
calculate the decisional starting point, or decisional bias
(2). The decision starting point represents the starting bias
at the beginning of the decision process and represents the
relative distance to the upper/lower decisional threshold.
A higher decision starting point would represent bias
towards the upper decisional threshold. Finally, we are
able to estimate the extradecisional time component ()
which represents the time used to complete all processes
not directly related to the decisional process such as
stimulus encoding or motor execution of the response.

Mapping DDM Parameters onto ACT-R

Recent work has shown that we can treat the ACT-R
declarative memory module as an evidence accumulator
model, and therefore can map the actual evidence
accumulator model (DDM) parameters onto the
declarative memory parameters within ACT-R (van der
Velde et al., 2021). The total time required to retrieve the
winning chunk ¢ with activation 4. within ACT-R is
defined by the equation below. Included in the equation is
the latency factor F.

RT, = Fe ¢ + t,, )

Over a trial average, this equation can be rewritten to
derive the expected time for retrieval across a series of
trials using the average latency factor F and average
activation A_:

F
E(RT,) = 2Ac + ter (3)

As the DDM assumes evidence accumulation at a constant
rate, the expected time for accumulator ¢ to reach the upper
decisional threshold a is dependent on the decisional
starting point z and drift rate v with a scaling factor #
(Bogacz et al., 20006).
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E(RT,) = ==+t @)

The DDM is different from other evidence accumulator
models in which there are two separate accumulation
processes occurring for each choice (or chunk) as DDM
incorporates the difference of the two possible decisions
into the evidence accumulation process (Bogacz et al.,
2006). In DDM, the probability P of accumulator ¢ with
drift rate v of reaching the upper decisional threshold a is
defined by the equation below.

1
1+e~2v

P = (5)

This equation is reminiscent of the probability of receiving
a certain chunk over a competitor in ACT-R: The
probability P of retrieving chunk ¢ with activation 4. over
a foil f with activation Ay can be represented by the
equation below.

eAc
k= 7

elcte”f

1
= 11 oA Af (6)

Using the above equations, we can then map ACT-R
parameters onto those outputted by DDM (Figure 1B).
F in ACT-R (latency factor) is related to the relationship
between the upper decisional threshold and the decisional
starting point or bias in DDM.
F=a-z @)

Drift rate v within DDM is related to the difference
between the activations of the competing chunks within
ACT-R. Here, we adapted the equation to reflect the
difference of the average activations of competing chunks
c and frepresented by 4A.

AA = —2v (8)

Similar to previous work, we see a direct equivalency of
the extradecisional component within an evidence
accumulator model of DDM and that within ACT-R (van
der Velde et al., 2021).

Ter = o )

>
w

Response ¢

Response ¢
v | —AA
z 2
2
Response f
0 0

Figure 1: (A) Illustration of the diffusion model with the
four main parameters (a, z, v, and #0) with three exemplary
trials (in blue). (B) The same model depiction but with the
equivalency of ACT-R parameters using equations (7)-(9).

Response f




Simulation: Recovering ACT-R Parameters

Materials and Methods

Data. The data used in this analysis was simulated using
ACT-R with code adapted from van der Velde et al. 2021.
ACT-R was used to simulate 25 model participants
undergoing a declarative memory retrieval task with two
competing chunks, ¢ and f. Time to reach the decision
boundary of the winning chunk was recorded in seconds
(referred to as response time). A ‘“correct” trial was
indicated when chunk ¢ was the first accumulator to reach
the decision boundary. Overall DDM fit can be affected by
outlier reaction times (Lerche et al., 2017) at lower trial
numbers so an IQR outlier correction was applied to
simulated data prior to model fitting. Simulations were
repeated with a varying number of trials per model
participant, ranging from 25 to 5000 to best understand the
minimum trial size needed for accurate parameter
recovery.

Model Fitting. The DDM was fitted individually to each
model’s simulated response/accuracy distributions using
the ddiffusion density function within the rtdists package
in R (R version 3.2.0; rtdists 0.8-3). For each model
participant, we used DDM to estimate parameters a, z, v,
and f. We likewise allowed the model to fluctuate on an
inter-trial basis by including inter-trial variability
parameters that account for changes in #, z, and v from
trial-to-trial (variability parameters: st, sz, sv). These
parameters have been shown to help with DDM fit to the
empirical distribution and improve accuracy of parameter
estimation (Lerche & Voss, 2016). ACT-R parameters
(4A, F, T,,) were recalculated using the equations (7)-(9)
previously described.

Results

To understand the optimal trial size for consistent ACT-R
parameter recovery we attempted the parameter recovery
simulation at varying trial sizes from 25 trials per
participant to 5000. Across all trial sizes we calculated
absolute error and correlations across the recovered
parameters: F, T,.and AA. Notably, we saw comparable
absolute errors and correlations of original vs. recovered
parameters at trial sizes of 100 trials per simulated
participant or greater (Figure 2; T, at 100 trials per
participant: » = 0.97, T,,. at 5000 trials per participant: r =
0.99; F at 100 trials per participant: r = 0.46, F at 5000
trials per participant: r = 0.48).

114

Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

2.0 —e— AA F - T,
S
e
hanl 1.5
i
[}
+ 1.0
=
o
n | S SN
o 0.5 : _____________
= | il
0.0 v T = LS L —
25 50 100 250 500 1K 2.5K 5K
5 Number of Trials
1.04 e
C el
S °°
+ .l el N
O o6 R N PP
[3) . D T Prg
— R
o 04 <
02{
0.0
25 50 100 250 500 1K 2.5K 5K

Number of Trials
Figure 2: Absolute error (A) and Pearson correlation
values (B) across trial sizes 25-5000 per participant across
the three recovered parameters: AA (shown in blue), F
(shown in orange), and T, (shown in green). Mean
absolute error (A) or mean correlation (B) across all
parameters is shown in black.

With just 100 trials per participant, the original inputted
ACT-R parameters showed a fairly linear and consistent
recovery with DDM parameter estimation (Figure 3).

W—c ? ter
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o

/

-2

2 0 2 2 0 2
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Figure 3: Scatter plot of original (x-axis) versus recovered
(y-axis) parameter values for 25 model participants with
100 trials per participant for the three recovered
parameters: AA (left: shown in blue), F (center: shown in
orange), and T, (right: shown in green).

2 0 2

We do, however, see larger variability in the recovery of
the difference of activation rates (44) with few outlier
participants causing large increases in the error observed
in the recovery. This effect did not seem to reduce with
increased trials per participant (Figure 4).
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Figure 4: Scatter plot of original (x-axis) versus recovered
(y-axis) parameter values for 25 model participants with
25-5000 trials per participant for the three recovered
parameters: AA (shown in pink), F (shown in green), and
T,, (shown in blue).

Parameter Estimation in an Empirical Dataset

Materials and Methods

Data. The data used here come from an experiment carried
out by Verstynen (2014) and freely available on
OpenNeuro (dataset ds000164). Twenty male and ten
female participants performed the color-word Stroop task
(Botvinick et al., 2001; Gratton et al., 1992; MacLeod,
1991; Stroop, 1935) which consisted of congruent,
incongruent, and neutral stimulus conditions. Participants
were presented with word-stimuli and were instructed to
respond to the color in which the word was printed and to
ignore the meaning of the printed word. In a congruent
condition, the words “GREEN”, “BLUE”, and
“YELLOW?” were displayed in the colors green, blue, and
yellow respectively. The incongruent condition showed
words whose meaning was a different color than the ink in
which the printed word was displayed (i.e., the displayed
word was “GREEN” in blue ink). In neutral conditions, a
non-color word was presented in an ink color (i.e., the
word “HAT” printed in blue ink). Participants responded
by pressing different buttons, with different right-hand
fingers, for each color (e.g., red: index; green: middle; and
yellow: ring finger). Each participant completed 120 trials
(42 congruent, 42 neutral, 36 incongruent). Trial types and
stimuli types were pseudorandomized in an event-related
fashion. Response time and accuracy were recorded for
each trial. The data was collected as part of a larger study
and more information of the participants and procedure
can be found in Verstynen (2014).

Model Fitting. The DDM was fitted to each participant’s
response-accuracy distribution separately. To optimize
computing speed and for added statistical rigor, DDM was
fitted using the Fast-dm-30.2 toolbox (Voss & Voss,
2007). Each participant’s parameter optimization was
statistically verified using the Kolmogorov-Smirnov
method. Similar to the simulation experiments, inter-trial
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variability parameters (sto, sz, sv) were allowed to fluctuate
across trials during the parameter estimation process to
optimize DDM fit. ACT-R parameters (44, F, T,,) and
were again recalculated from the outputted DDM
parameters (v, z, a, and tp) using equations (7)-(9). DDM
density plots were created using the ddiffusion density
function within the rdists toolbox in R (R version 3.2.0;
rtdists 0.8-3).

ACT-R Stroop Task. A simple model of the Stroop task
was implemented to test the possibility of translating
DDM parameters directly into ACT-R models. This model
borrows the central idea of previous models of response
interference in the Stroop (Lovett, 2002) and Simon tasks
(Stocco et al., 2017) and captures the Stroop effect as
interference in the color name retrieval due to competing
sources of activation. Specifically, the model responds by
initially focusing on the word’s color. While attending to
the color, the model attempts to retrieve an associated
color name. This retrieval process is aided by activation
spreading from the attended color to the corresponding
name (e.g., from the color green to the word “green”),
which confers an additional boost of activation to the
correct color name over the equally active names of other
colors. Once a color name is retrieved, a production rule
performs the corresponding motor response. The
simplicity of this model makes the DDM parameters
immediately translatable. Specifically, the difference in
mean activation between competing chunks (44)
corresponds to the contribution of spreading activation
from the word’s color, and the 7. parameter corresponds
to the duration of motor execution (the “motor burst time”
parameter) once the visual encoding time (fixed and
maintained at its default value of 50ms) and the execution
time of the necessary productions (three productions for
50ms each) are accounted for.

Note that although T, by definition represents time
components split across both the visual encoding and
motor module, functionally it does not make a difference
which of these T,, is incorporated into as regardless it will
be added on to overall reaction time. We ran
individualized ACT-R models with these inputted
parameters for each of the participants with the same
number of trials as in the empirical study (42 congruent,
42 neutral, and 36 incongruent).

Results

We fit DDM to each participant’s data individually.
Across all participants, we observed a reasonable fit of
DDM to the empirical distribution which was further
verified through the Kolmogorov-Smirnov test statistic (p
= [0.83-0.99] across all stimulus types). This provided
reassurance that the outputted DDM parameters were
reasonably estimated and could be used for subsequent
ACT-R parameter recovery. Excitingly, we were able to
estimate reasonable ACT-R parameters: F, T,,., and
difference of activation rates between the competing



chunks (44). Although we observed moderate variability
across subjects and condition types, F (across all
conditions F =0.64 + 0.13), T, (across all conditions T,
= 0.61 £ 0.07), 44 (across all conditions 44 = 6.13 +
1.74) and were within typical ranges according to previous
ACT-R studies (Anderson et. al, 1998).

We were further interested to see if ACT-R simulated data
of a Stroop task that utilizes these estimated parameters
would provide a comparable reaction time/accuracy
distribution to the empirical data we originally inputted
into the DDM. Across the 28 participants we saw
relatively linear recovery of mean reaction time and
accuracy across participants (Figure 6A). To ensure these
parameters were indeed individualized to the participant
and not a factor of task, we randomized the estimated
parameters across participants and again compared the
recovery of mean reaction time/accuracy across
participants. As seen in Figure 6B, this recovery is
substantially worse if parameters are not matched to the
original participant, providing evidence that this parameter
estimation method is sensitive to and sustains individual
differences in its integration into ACT-R.

A. DDM-Derived Parameters B. Scrambled Parameters
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Figure 6: Mean accuracy and reaction time of the original
empirical subjects (x-axis) versus the ACT-R simulated
data (y-axis) with the DDM-Derived participant-specific
ACT-R parameters inputted (A) versus if the DDM-
Derived ACT-R parameters are randomized across
different subjects (B).
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Discussion

In this paper, we have presented evidence of an ability
to integrate DDM parameters into the ACT-R parameter
estimation process. Across trial sizes as low as 100 trials
per model participant, we observed a fairly consistent and
linear recovery of the extradecisional time component T,.,
the latency factor F, and difference of activation rates
between the top two competing chunks 44, within a
simulated declarative memory retrieval task. Both T,,. and
F showed a relatively consistent increase in correlation
and decrease in observed absolute error as trial sizes
increased from 25-5000 trials per participant.
Interestingly, in observing the recovery of 44, we
observed a “zig-zag” pattern in correlation and observed
absolute error as trial sizes increased instead of the steady
increase in recovery correlation/decrease in absolute error
as observed with the other parameters. We expect this is
due to the presence of 1-4 simulated participants within
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each simulation in which the estimated DDM drift rate (v)
was very high due to the presence of numerous trials with
extremely short simulated reaction times (<200ms). As
our simulated reaction time/accuracy distributions were
drawn from random distributions, the presence of model
participants with trials like this were randomly observed,
which caused the odd pattern of recovery (i.e., seemingly
better observed absolute error in trial sizes of 50 compared
to 100 trials per participant). In use with empirical data and
non-simulated participants, this becomes less of an issue
as extremely short reaction times are typically removed by
way of outlier correction prior to model fitting. However,
to not only reduce the presence of these apparent outliers
but similarly increase the statistical rigor of the DDM
parameter estimation, we plan to integrate an optimizer
function into the process of fitting the DDM to the original
dataset. From there, one could choose the set of parameters
with an optimized fit before mapping to ACT-R
parameters. One could similarly utilize existing software
such as the Fast-dm-30.2 toolbox (Voss & Voss, 2007)
which incorporates optimization methods without added
burden to the user.

To further emulate this method’s applicability, we
utilized this DDM-ACT-R parameter estimation method
on an empirical data set of a Stroop task (Verstynen,
2014). We demonstrated that by using DDM-derived
parameters, we were able to estimate ACT-R parameters
within typical ranges according to prior studies. Most
excitingly, when we integrated these DDM-derived
parameters into an ACT-R simulated Stroop model, we
were able to accurately recreate the reaction time/accuracy
distributions observed within the empirical dataset as
shown by comparing empirical versus recovered mean
reaction time and accuracies. Notably, these parameters
seemed to be individualized to the participant, as
randomization of these parameters showed a worse
recovery of empirical mean reaction time and accuracy
across participants. Further comparison experiments are
needed to understand whether DDM-ACT-R parameter
estimation method is indeed more accurate/individualized
compared to common parameter estimation methods such
as parameter grid searches or sweeps, although this DDM-
ACT-R method has been shown to be quicker and less
computationally expensive in this application.

While this method has shown promising results in
optimizing incorporating empirical data into a simulated
model, the Stroop ACT-R model we used is significantly
simplified compared to existing models of this task that
have been based on the neurocognitive properties this task
elicits (Lovett, 2002; Stocco et al., 2017). In applications
confined to a declarative memory task, we are hopeful that
this method will be relevant beyond binary decision tasks
to multi-alternative decisions, again increasing the
usability of drift diffusion models. However, future work
utilizing this method outside of the scope of a declarative
memory task (i.e., one that relies on procedural



complexity) is needed to understand the breadth of its
applicability.

Individualized, consistent and accurate estimation of
ACT-R parameters with this method, even on simple tasks,
would allow us to have a proxy measure for task neural
dynamics in datasets that only have behavioral data,
greatly reducing the need for expensive and time-
consuming fMRI data collection. The integration of DDM
into ACT-R can further give neural context to the
parameters used in DDM, an application of DDM that has
been inconsistent in previous work (Gupta et al., 2022).

In summary, we have exhibited a clear integration of the
drift diffusion model into the cognitive architecture of
ACT-R. This relationship contributes to a larger effort in
optimizing the utilization of empirical data in informing
cognitive models as well as in the overall integration of
modeling methods.

References

Anderson, J. R. (2007). How Can the Human Mind
Occur in the Physical Universe? Oxford University
Press.https://doi.org/10.1093/acprof:0s0/97801953242
59.001.0001

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An Integrated Theory of
the Mind. Psychological Review, 111(4), 1036—1060.
https://doi.org/10.1037/0033-295X.111.4.1036

Anderson, R. C. (1974). Substance Recall of Sentences.
Quarterly Journal of Experimental Psychology, 26(3),
530-541. https://doi.org/10.1080/14640747408400443

Bogacz, R., Brown, E., Mochlis, J., Holmes, P., &
Cohen, J. D. (2006). The physics of optimal decision
making: A formal analysis of models of performance in
two-alternative forced-choice tasks. Psychological
Review, 113(4), 700-765.
https://doi.org/10.1037/0033-295X.113.4.700

Bond, K., Dunovan, K., & Verstynen, T. (2018). Value-
conflict and volatility influence distinct decision-
making processes. 2018 Conference on Cognitive
Computational Neuroscience. 2018 Conference on
Cognitive Computational Neuroscience, Philadelphia,
Pennsylvania, USA.
https://doi.org/10.32470/CCN.2018.1068-0

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C.
S., & Cohen, J. D. (2001). Conflict monitoring and
cognitive control. Psychological Review, 108(3), 624—
652. https://doi.org/10.1037/0033-295X.108.3.624

Gratton, G., Coles, M. G. H., & Donchin, E. (1992).
Optimizing the use of information: Strategic control of
activation of responses. Journal of Experimental
Psychology: General, 121(4), 480-506.
https://doi.org/10.1037/0096-3445.121.4.480

Gupta, A., Bansal, R., Alashwal, H., Kacar, A. S., Balci,
F., & Moustafa, A. A. (2022). Neural Substrates of the
Drift-Diffusion Model in Brain Disorders. Frontiers in
Computational Neuroscience, 15, 678232.
https://doi.org/10.3389/fncom.2021.678232

117

Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

Kotseruba, 1., & Tsotsos, J. K. (2020). 40 years of
cognitive architectures: Core cognitive abilities and
practical applications. Artificial Intelligence Review,
53(1), 17-94. https://doi.org/10.1007/s10462-018-
9646-y

Lerche, V., & Voss, A. (2016). Model Complexity in
Diffusion Modeling: Benefits of Making the Model
More Parsimonious. Frontiers in Psychology, 7.
https://doi.org/10.3389/fpsyg.2016.01324

Lerche, V., Voss, A., & Nagler, M. (2017). How many
trials are required for parameter estimation in diffusion
modeling? A comparison of different optimization
criteria. Behavior Research Methods, 49(2), 513-537.
https://doi.org/10.3758/s13428-016-0740-2

Lovett, M. C. (2002). Modeling selective attention: Not
just another model of Stroop (NJAMOS). Cognitive
Systems Research, 3(1), 67-76.
https://doi.org/10.1016/S1389-0417(01)00045-6

MacLeod, C. M. (1991). Half a century of research on the
Stroop effect: An integrative review. Psychological
Bulletin, 109(2), 163-203.
https://doi.org/10.1037/0033-2909.109.2.163

Mulder, M. J., Keuken, M. C., van Maanen, L., Boekel,
W., Forstmann, B. U., & Wagenmakers, E.-J. (2013).
The speed and accuracy of perceptual decisions in a
random-tone pitch task. Attention, Perception, &
Psychophysics, 75(5), 1048—1058.
https://doi.org/10.3758/s13414-013-0447-8

Pavlik, P. 1., & Anderson, J. R. (2005). Practice and
Forgetting Effects on Vocabulary Memory: An
Activation-Based Model of the Spacing Effect.
Cognitive Science, 29(4), 559-586.
https://doi.org/10.1207/s15516709cog0000_14

Ratcliff, R. (1978). A theory of memory retrieval.
Psychological Review, 85(2), 59—-108.
https://doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R., & Frank, M. J. (2012). Reinforcement-Based
Decision Making in Corticostriatal Circuits: Mutual
Constraints by Neurocomputational and Diffusion
Models. Neural Computation, 24(5), 1186—-1229.
https://doi.org/10.1162/NECO_a 00270

Ratcliff, R., & McKoon, G. (2008). The Diffusion
Decision Model: Theory and Data for Two-Choice
Decision Tasks. Neural Computation, 20(4), 873-922.
https://doi.org/10.1162/neco.2008.12-06-420

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating
parameters of the diffusion model: Approaches to
dealing with contaminant reaction times and parameter
variability. Psychonomic Bulletin & Review, 9(3), 438—
481. https://doi.org/10.3758/BF03196302

Stocco, A., Murray, N. L., Yamasaki, B. L., Renno, T. J.,
Nguyen, J., & Prat, C. S. (2017). Individual differences
in the Simon effect are underpinned by differences in
the competitive dynamics in the basal ganglia: An
experimental verification and a computational model.
Cognition, 164, 31-45.
https://doi.org/10.1016/j.cognition.2017.03.001



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

Stone, M. (1960). Models for choice-reaction time.
Psychometrika, 25(3), 251-260.
https://doi.org/10.1007/BF02289729

Stroop, J. R. (1935). Studies of interference in serial
verbal reactions. Journal of Experimental Psychology,
18(6), 643—662. https://doi.org/10.1037/h0054651

van der Velde, M., Sense, F., Borst, J. P., van Maanen,
L., & van Rijn, H. (2021). Capturing dynamic
performance in a cognitive model: Estimating ACT-R
memory parameters with the linear ballistic
accumulator [Preprint]. PsyArXiv.
https://doi.org/10.31234/0sf.i0/yg7s6

Verstynen, T. D. (2014). The organization and dynamics
of corticostriatal pathways link the medial orbitofrontal
cortex to future behavioral responses. Journal of
Neurophysiology, 112(10), 2457-2469.
https://doi.org/10.1152/jn.00221.2014

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion
Models in Experimental Psychology: A Practical
Introduction. Experimental Psychology, 60(6), 385—
402. https://doi.org/10.1027/1618-3169/a000218

Voss, A., Rothermund, K., & Voss, J. (2004).
Interpreting the parameters of the diffusion model: An
empirical validation. Memory & Cognition, 32(7),
1206-1220. https://doi.org/10.3758/BF03196893

Voss, A., & Voss, J. (2007). Fast-dm: A free program for
efficient diffusion model analysis. Behavior Research
Methods, 39(4), 767-775.
https://doi.org/10.3758/BF03192967

Wald, A., & Wolfowitz, J. (1948). Optimum Character of
the Sequential Probability Ratio Test. The Annals of
Mathematical Statistics, 19(3), 326-339. JSTOR.

118



Proceedings of the 20th International Conference on Cognitive Modelling (ICCM 2022)

Learning to Expect Change: Volatility During Early Experience Alters
Reward Expectations in a Model of Interval Timing

Nora C. Harhen (nharhen@uci.edu)
Aaron M. Bornstein (aaron.bornstein @uci.edu)
Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697 USA

Abstract

An unpredictable early life environment can have enduring
effects on mental health outcomes in adulthood. Despite
widespread evidence for this relationship, it remains unclear
what core mechanism links the two. Here we propose that
early life unpredictability (ELU) shapes the development of
temporal sequence representations. Critically, we show that
this in turn produces impairments in reward sensitivity and
learning, phenotypes that have been associated with anhedo-
nia, a transdiagnostic symptom often observed in individuals
with ELU. We formalize this hypothesis using a principled
model of interval timing whose representations adjust with ex-
perience to support adaptive temporal predictions. The core
observation is that initial unpredictability in timing produces
broader, more imprecise temporal expectations. As a result,
reward anticipation and learning are diminished. When we
introduced agents with broader expectations into a stable en-
vironment, they showed a greater response to the omission of
reward relative to its presence. This bias accords with negative
attentional and mnemonic biases associated with anhedonia.
In sum, we show that a single mechanism can explain a range
of behaviors associated with anhedonia, offering insights into
the role of temporal representations in reward learning and in
the emergence of phenotypes linked to psychiatric disorders.

Keywords: early life unpredictability; reinforcement learning;
interval timing; temporal representation

Introduction

Across development, brain circuits adapt to meet the demands
of the environment. Concretely, sensory receptive fields are
tuned to reflect the statistics of the early life environment,
determining perceptual discrimination abilities in adulthood.
Consistency is crucial to this maturation process. For func-
tional circuits to form, the input statistics must be consis-
tent (Li, Fitzpatrick, & White, 2006). It has recently been
proposed that similar processes may occur in reinforcement
and memory systems critically involved in associative learn-
ing (Birnie et al., 2020). This implies that the consistency
or predictability of associations encountered early in life may
shape the acquisition of associations later on.

Interactions with caregivers are one contributor to the as-
sociative statistics an infant encounters. For example, the
infant behaves in some way and, normatively, the caregiver
produces a consistent response to this behavior such that the
infant can anticipate the response in the future. The timing
between behavior and response is encoded and can be repre-
sented using a set of temporal receptive fields (TRFs) similar
to receptive fields found in sensory areas. Instead of being
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tuned to visual angle or auditory pitch, these TRFs are sen-
sitive to the time between associated stimuli and its cons<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>